60.1.497 problem 510

Internal problem ID [10511]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 510
Date solved : Sunday, March 30, 2025 at 05:33:12 PM
CAS classification : [`y=_G(x,y')`]

\begin{align*} x^{2} \left (x^{2} y^{4}-1\right ) {y^{\prime }}^{2}+2 x^{3} y^{3} \left (y^{2}-x^{2}\right ) y^{\prime }-y^{2} \left (x^{4} y^{2}-1\right )&=0 \end{align*}

Maple
ode:=x^2*(x^2*y(x)^4-1)*diff(y(x),x)^2+2*x^3*y(x)^3*(y(x)^2-x^2)*diff(y(x),x)-y(x)^2*(x^4*y(x)^2-1) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=-(y[x]^2*(-1 + x^4*y[x]^2)) + 2*x^3*y[x]^3*(-x^2 + y[x]^2)*D[y[x],x] + x^2*(-1 + x^2*y[x]^4)*D[y[x],x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x**3*(-x**2 + y(x)**2)*y(x)**3*Derivative(y(x), x) + x**2*(x**2*y(x)**4 - 1)*Derivative(y(x), x)**2 - (x**4*y(x)**2 - 1)*y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out