60.4.9 problem 1462

Internal problem ID [11432]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 3, linear third order
Problem number : 1462
Date solved : Sunday, March 30, 2025 at 08:22:07 PM
CAS classification : [[_3rd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime \prime }-\left (6 k^{2} \sin \left (x \right )^{2}+a \right ) y^{\prime }+b y&=0 \end{align*}

Maple
ode:=diff(diff(diff(y(x),x),x),x)-(6*k^2*sin(x)^2+a)*diff(y(x),x)+b*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=b*y[x] - (a + 6*k^2*Sin[x]^2)*D[y[x],x] + Derivative[3][y][x] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
k = symbols("k") 
y = Function("y") 
ode = Eq(b*y(x) - (a + 6*k**2*sin(x)**2)*Derivative(y(x), x) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (b*y(x) + Derivative(y(x), (x, 3)))/(a + 6*k**2*sin(x)**2) cannot be solved by the factorable group method