50.3.20 problem 3(d)

Internal problem ID [7844]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 1. What is a differential equation. Section 1.4 First Order Linear Equations. Page 15
Problem number : 3(d)
Date solved : Sunday, March 30, 2025 at 12:29:35 PM
CAS classification : [_separable]

\begin{align*} y^{\prime }+x y&=x y^{4} \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 64
ode:=diff(y(x),x)+x*y(x) = x*y(x)^4; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {1}{\left ({\mathrm e}^{\frac {3 x^{2}}{2}} c_1 +1\right )^{{1}/{3}}} \\ y &= -\frac {1+i \sqrt {3}}{2 \left ({\mathrm e}^{\frac {3 x^{2}}{2}} c_1 +1\right )^{{1}/{3}}} \\ y &= \frac {i \sqrt {3}-1}{2 \left ({\mathrm e}^{\frac {3 x^{2}}{2}} c_1 +1\right )^{{1}/{3}}} \\ \end{align*}
Mathematica. Time used: 2.01 (sec). Leaf size: 116
ode=D[y[x],x]+x*y[x]==x*y[x]^4; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {1}{\sqrt [3]{1+e^{\frac {3 x^2}{2}+3 c_1}}} \\ y(x)\to -\frac {\sqrt [3]{-1}}{\sqrt [3]{1+e^{\frac {3 x^2}{2}+3 c_1}}} \\ y(x)\to \frac {(-1)^{2/3}}{\sqrt [3]{1+e^{\frac {3 x^2}{2}+3 c_1}}} \\ y(x)\to 0 \\ y(x)\to 1 \\ y(x)\to -\sqrt [3]{-1} \\ y(x)\to (-1)^{2/3} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*y(x)**4 + x*y(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out