Internal
problem
ID
[7772]
Book
:
An
introduction
to
Ordinary
Differential
Equations.
Earl
A.
Coddington.
Dover.
NY
1961
Section
:
Chapter
6.
Existence
and
uniqueness
of
solutions
to
systems
and
nth
order
equations.
Page
254
Problem
number
:
2
Date
solved
:
Sunday, March 30, 2025 at 12:23:38 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(y__1(x),x) = 3*y__1(x)+x*y__3(x), diff(y__2(x),x) = y__2(x)+x^3*y__3(x), diff(y__3(x),x) = 2*x*y__1(x)-y__2(x)+exp(x)*y__3(x)]; dsolve(ode);
ode={D[ y1[x],x]==3*y1[x]+x*y3[x],D[ y2[x],x]==y2[x]+x^3*y3[x],D[ y3[x],x]==2*x*y1[x]-y2[x]+Exp[x]*y3[x]}; ic={}; DSolve[{ode,ic},{y1[x],y2[x],y3[x]},x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") y__1 = Function("y__1") y__2 = Function("y__2") y__3 = Function("y__3") ode=[Eq(-x*y__3(x) - 3*y__1(x) + Derivative(y__1(x), x),0),Eq(-x**3*y__3(x) - y__2(x) + Derivative(y__2(x), x),0),Eq(-2*x*y__1(x) + y__2(x) - y__3(x)*exp(x) + Derivative(y__3(x), x),0)] ics = {} dsolve(ode,func=[y__1(x),y__2(x),y__3(x)],ics=ics)
NotImplementedError :