Internal
problem
ID
[7753]
Book
:
An
introduction
to
Ordinary
Differential
Equations.
Earl
A.
Coddington.
Dover.
NY
1961
Section
:
Chapter
5.
Existence
and
uniqueness
of
solutions
to
first
order
equations.
Page
198
Problem
number
:
1(g)
Date
solved
:
Sunday, March 30, 2025 at 12:22:41 PM
CAS
classification
:
[_exact]
ode:=2*y(x)*exp(2*x)+2*x*cos(y(x))+(exp(2*x)-x^2*sin(y(x)))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(2*y[x]*Exp[2*x]+2*x*Cos[y[x]])+(Exp[2*x]-x^2*Sin[y[x]])*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x*cos(y(x)) + (-x**2*sin(y(x)) + exp(2*x))*Derivative(y(x), x) + 2*y(x)*exp(2*x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out