50.19.3 problem 1(c)

Internal problem ID [8111]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 4. Power Series Solutions and Special Functions. Section 4.4. REGULAR SINGULAR POINTS. Page 175
Problem number : 1(c)
Date solved : Sunday, March 30, 2025 at 12:45:39 PM
CAS classification : [[_2nd_order, _missing_y]]

\begin{align*} x^{2} y^{\prime \prime }+\left (2-x \right ) y^{\prime }&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple
Order:=8; 
ode:=x^2*diff(diff(y(x),x),x)+(2-x)*diff(y(x),x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ \text {No solution found} \]
Mathematica. Time used: 0.034 (sec). Leaf size: 64
ode=x^2*D[y[x],{x,2}]+(2-x)*D[y[x],x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,7}]
 
\[ y(x)\to c_2 e^{2/x} \left (\frac {2835 x^7}{2}+315 x^6+\frac {315 x^5}{4}+\frac {45 x^4}{2}+\frac {15 x^3}{2}+3 x^2+\frac {3 x}{2}+1\right ) x^3+c_1 \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + (2 - x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=8)
 
ValueError : ODE x**2*Derivative(y(x), (x, 2)) + (2 - x)*Derivative(y(x), x) does not match hint 2nd_power_series_regular