50.4.7 problem 7

Internal problem ID [7856]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 1. What is a differential equation. Section 1.5. Exact Equations. Page 20
Problem number : 7
Date solved : Sunday, March 30, 2025 at 12:30:52 PM
CAS classification : [_exact]

\begin{align*} \left (\sin \left (x \right ) \sin \left (y\right )-x \,{\mathrm e}^{y}\right ) y^{\prime }&={\mathrm e}^{y}+\cos \left (x \right ) \cos \left (y\right ) \end{align*}

Maple. Time used: 0.020 (sec). Leaf size: 16
ode:=(sin(x)*sin(y(x))-x*exp(y(x)))*diff(y(x),x) = exp(y(x))+cos(x)*cos(y(x)); 
dsolve(ode,y(x), singsol=all);
 
\[ c_1 +\sin \left (x \right ) \cos \left (y\right )+x \,{\mathrm e}^{y} = 0 \]
Mathematica. Time used: 0.634 (sec). Leaf size: 21
ode=(Sin[x]*Sin[y[x]]-x*Exp[y[x]])*D[y[x],x]==Exp[y[x]]+Cos[x]*Cos[y[x]]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [2 \left (x e^{y(x)}+\sin (x) \cos (y(x))\right )=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((-x*exp(y(x)) + sin(x)*sin(y(x)))*Derivative(y(x), x) - exp(y(x)) - cos(x)*cos(y(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out