50.5.8 problem 1(h)

Internal problem ID [7878]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 1. What is a differential equation. Section 1.7. Homogeneous Equations. Page 28
Problem number : 1(h)
Date solved : Sunday, March 30, 2025 at 12:35:08 PM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} x y^{\prime }&=\sqrt {x^{2}+y^{2}} \end{align*}

Maple. Time used: 0.024 (sec). Leaf size: 51
ode:=x*diff(y(x),x) = (x^2+y(x)^2)^(1/2); 
dsolve(ode,y(x), singsol=all);
 
\[ \frac {y^{2}+y \sqrt {x^{2}+y^{2}}+x^{2} \left (\ln \left (y+\sqrt {x^{2}+y^{2}}\right )-c_1 -3 \ln \left (x \right )\right )}{x^{2}} = 0 \]
Mathematica. Time used: 0.272 (sec). Leaf size: 66
ode=x*D[y[x],x]==Sqrt[x^2+y[x]^2]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\frac {1}{2} \left (\frac {y(x) \left (\sqrt {\frac {y(x)^2}{x^2}+1}+\frac {y(x)}{x}\right )}{x}-\log \left (\sqrt {\frac {y(x)^2}{x^2}+1}-\frac {y(x)}{x}\right )\right )=\log (x)+c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) - sqrt(x**2 + y(x)**2),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : cannot determine truth value of Relational