50.6.6 problem 1(f)

Internal problem ID [7898]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 1. What is a differential equation. Section 1.8. Integrating Factors. Page 32
Problem number : 1(f)
Date solved : Sunday, March 30, 2025 at 12:36:30 PM
CAS classification : [[_homogeneous, `class G`], _rational]

\begin{align*} y+\left (x -2 x^{2} y^{3}\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.033 (sec). Leaf size: 316
ode:=y(x)+(x-2*x^2*y(x)^3)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {12^{{1}/{3}} \left (x^{2} 12^{{1}/{3}} c_1 +{\left (-9 \left (-\frac {\sqrt {3}\, \sqrt {\frac {27 c_1^{3}-4 x^{2}}{c_1}}}{9}+c_1 \right ) c_1^{2} x^{2}\right )}^{{2}/{3}}\right )}{6 c_1 x {\left (-9 \left (-\frac {\sqrt {3}\, \sqrt {\frac {27 c_1^{3}-4 x^{2}}{c_1}}}{9}+c_1 \right ) c_1^{2} x^{2}\right )}^{{1}/{3}}} \\ y &= \frac {3^{{1}/{3}} 2^{{2}/{3}} \left (\left (-i \sqrt {3}-1\right ) {\left (-9 \left (-\frac {\sqrt {3}\, \sqrt {\frac {27 c_1^{3}-4 x^{2}}{c_1}}}{9}+c_1 \right ) c_1^{2} x^{2}\right )}^{{2}/{3}}+c_1 2^{{2}/{3}} \left (i 3^{{5}/{6}}-3^{{1}/{3}}\right ) x^{2}\right )}{12 {\left (-9 \left (-\frac {\sqrt {3}\, \sqrt {\frac {27 c_1^{3}-4 x^{2}}{c_1}}}{9}+c_1 \right ) c_1^{2} x^{2}\right )}^{{1}/{3}} x c_1} \\ y &= -\frac {3^{{1}/{3}} 2^{{2}/{3}} \left (\left (1-i \sqrt {3}\right ) {\left (-9 \left (-\frac {\sqrt {3}\, \sqrt {\frac {27 c_1^{3}-4 x^{2}}{c_1}}}{9}+c_1 \right ) c_1^{2} x^{2}\right )}^{{2}/{3}}+c_1 2^{{2}/{3}} x^{2} \left (i 3^{{5}/{6}}+3^{{1}/{3}}\right )\right )}{12 {\left (-9 \left (-\frac {\sqrt {3}\, \sqrt {\frac {27 c_1^{3}-4 x^{2}}{c_1}}}{9}+c_1 \right ) c_1^{2} x^{2}\right )}^{{1}/{3}} x c_1} \\ \end{align*}
Mathematica. Time used: 30.078 (sec). Leaf size: 327
ode=y[x]+(x-2*x^2*y[x]^3)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {2 \sqrt [3]{3} c_1 x^2+\sqrt [3]{2} \left (-9 x^2+\sqrt {81 x^4-12 c_1{}^3 x^6}\right ){}^{2/3}}{6^{2/3} x \sqrt [3]{-9 x^2+\sqrt {81 x^4-12 c_1{}^3 x^6}}} \\ y(x)\to \frac {i \sqrt [3]{3} \left (\sqrt {3}+i\right ) \left (-18 x^2+2 \sqrt {81 x^4-12 c_1{}^3 x^6}\right ){}^{2/3}-2 \sqrt [3]{2} \sqrt [6]{3} \left (\sqrt {3}+3 i\right ) c_1 x^2}{12 x \sqrt [3]{-9 x^2+\sqrt {81 x^4-12 c_1{}^3 x^6}}} \\ y(x)\to \frac {\sqrt [3]{3} \left (-1-i \sqrt {3}\right ) \left (-18 x^2+2 \sqrt {81 x^4-12 c_1{}^3 x^6}\right ){}^{2/3}-2 \sqrt [3]{2} \sqrt [6]{3} \left (\sqrt {3}-3 i\right ) c_1 x^2}{12 x \sqrt [3]{-9 x^2+\sqrt {81 x^4-12 c_1{}^3 x^6}}} \\ y(x)\to 0 \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((-2*x**2*y(x)**3 + x)*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out