50.20.6 problem 4

Internal problem ID [8134]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 4. Power Series Solutions and Special Functions. Section 4.5. More on Regular Singular Points. Page 183
Problem number : 4
Date solved : Sunday, March 30, 2025 at 12:46:19 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (x -1\right )^{2} y^{\prime \prime }-3 \left (x -1\right ) y^{\prime }+2 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 1 \end{align*}

Maple. Time used: 0.028 (sec). Leaf size: 36
Order:=8; 
ode:=(x-1)^2*diff(diff(y(x),x),x)-3*(x-1)*diff(y(x),x)+2*y(x) = 0; 
dsolve(ode,y(x),type='series',x=1);
 
\[ y = \left (x -1\right )^{2} \left (c_1 \left (x -1\right )^{-\sqrt {2}}+c_2 \left (x -1\right )^{\sqrt {2}}\right )+O\left (x^{8}\right ) \]
Mathematica. Time used: 0.014 (sec). Leaf size: 34
ode=(x-1)^2*D[y[x],{x,2}]-3*(x-1)*D[y[x],x]+2*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,1,7}]
 
\[ y(x)\to c_1 (x-1)^{2+\sqrt {2}}+c_2 (x-1)^{2-\sqrt {2}} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((x - 1)**2*Derivative(y(x), (x, 2)) - (3*x - 3)*Derivative(y(x), x) + 2*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=1,n=8)
 
IndexError : list index out of range