2.2.200 Problems 19901 to 20000

Table 2.413: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

19901

\begin{align*} y^{2}+\left (x^{2}+y x \right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

131.329

19902

\begin{align*} x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.706

19903

\begin{align*} \left (3 x +4 y\right ) y^{\prime }+y-2 x&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

91.762

19904

\begin{align*} 3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

133.328

19905

\begin{align*} \left (y-3 x +3\right ) y^{\prime }&=2 y-x -4 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

145.332

19906

\begin{align*} x^{2}-4 y x -2 y^{2}+\left (y^{2}-4 y x -2 x^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

31.047

19907

\begin{align*} x +y^{\prime } y+\frac {-y+y^{\prime } x}{y^{2}+x^{2}}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _exact, _rational]

6.881

19908

\begin{align*} a^{2}-2 y x -y^{2}-\left (x +y\right )^{2} y^{\prime }&=0 \\ \end{align*}

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

6.166

19909

\begin{align*} 2 a x +b y+g +\left (2 c y+b x +e \right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

37.828

19910

\begin{align*} \left (2 x^{2} y+4 x^{3}-12 x y^{2}+3 y^{2}-x \,{\mathrm e}^{y}+{\mathrm e}^{2 x}\right ) y^{\prime }+12 x^{2} y+2 x y^{2}+4 x^{3}-4 y^{3}+2 y \,{\mathrm e}^{2 x}-{\mathrm e}^{y}&=0 \\ \end{align*}

[_exact]

9.449

19911

\begin{align*} y-y^{\prime } x +\ln \left (x \right )&=0 \\ \end{align*}

[_linear]

8.311

19912

\begin{align*} \left (y x +1\right ) y-x \left (-y x +1\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

27.984

19913

\begin{align*} a \left (y^{\prime } x +2 y\right )&=x y^{\prime } y \\ \end{align*}

[_separable]

26.100

19914

\begin{align*} {\mathrm e}^{x} x^{4}-2 m x y^{2}+2 m \,x^{2} y y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class D‘], _Bernoulli]

10.944

19915

\begin{align*} y \left ({\mathrm e}^{x}+2 y x \right )-{\mathrm e}^{x} y^{\prime }&=0 \\ \end{align*}

[_Bernoulli]

31.138

19916

\begin{align*} x^{2} y-2 x y^{2}-\left (x^{3}-3 x^{2} y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

29.619

19917

\begin{align*} y \left (y x +2 y^{2} x^{2}\right )+x \left (y x -y^{2} x^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.069

19918

\begin{align*} 2 y^{\prime } y+2 x +x^{2}+y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

12.340

19919

\begin{align*} x^{2}+y^{2}-x^{2} y y^{\prime }&=0 \\ \end{align*}

[_rational, _Bernoulli]

5.983

19920

\begin{align*} 3 x^{2} y^{4}+2 y x +\left (2 x^{3} y^{3}-x^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

14.476

19921

\begin{align*} y^{4}+2 y+\left (x y^{3}+2 y^{4}-4 x \right ) y^{\prime }&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

7.326

19922

\begin{align*} y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

67.564

19923

\begin{align*} 2 x^{2} y-3 y^{4}+\left (3 x^{3}+2 x y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

28.137

19924

\begin{align*} y^{2}+2 x^{2} y+\left (2 x^{3}-y x \right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

25.785

19925

\begin{align*} y^{\prime } x -a y&=x +1 \\ \end{align*}

[_linear]

9.352

19926

\begin{align*} y^{\prime }+y&={\mathrm e}^{-x} \\ \end{align*}

[[_linear, ‘class A‘]]

5.717

19927

\begin{align*} \cos \left (x \right )^{2} y^{\prime }+y&=\tan \left (x \right ) \\ \end{align*}

[_linear]

6.244

19928

\begin{align*} \left (x +1\right ) y^{\prime }-n y&={\mathrm e}^{x} \left (x +1\right )^{n +1} \\ \end{align*}

[_linear]

11.225

19929

\begin{align*} \left (x^{2}+1\right ) y^{\prime }+2 y x&=4 x^{2} \\ \end{align*}

[_linear]

3.276

19930

\begin{align*} y^{\prime }+\frac {y}{x}&=y^{6} x^{2} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

13.209

19931

\begin{align*} 1+y^{2}&=\left (\arctan \left (y\right )-x \right ) y^{\prime } \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

14.086

19932

\begin{align*} y^{\prime }+\frac {2 y}{x}&=3 x^{2} y^{{1}/{3}} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

36.508

19933

\begin{align*} y^{\prime }+\frac {x y}{-x^{2}+1}&=x \sqrt {y} \\ \end{align*}

[_rational, _Bernoulli]

28.033

19934

\begin{align*} 3 x \left (-x^{2}+1\right ) y^{2} y^{\prime }+\left (2 x^{2}-1\right ) y^{3}&=a \,x^{3} \\ \end{align*}

[_rational, _Bernoulli]

11.274

19935

\begin{align*} \left (x +y\right )^{2} y^{\prime }&=a^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

29.674

19936

\begin{align*} -y+y^{\prime } x&=\sqrt {y^{2}+x^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

51.539

19937

\begin{align*} -y+y^{\prime } x&=x \sqrt {y^{2}+x^{2}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

40.799

19938

\begin{align*} \sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

35.825

19939

\begin{align*} y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

11.337

19940

\begin{align*} y^{\prime }+\frac {\left (1-2 x \right ) y}{x^{2}}&=1 \\ \end{align*}

[_linear]

5.168

19941

\begin{align*} 3 y^{\prime }+\frac {2 y}{x +1}&=\frac {x^{3}}{y^{2}} \\ \end{align*}

[_rational, _Bernoulli]

11.072

19942

\begin{align*} 2 x -y+1+\left (2 y-x -1\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14.711

19943

\begin{align*} y^{\prime }+\frac {y}{\sqrt {-x^{2}+1}}&=\frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}} \\ \end{align*}

[_linear]

13.831

19944

\begin{align*} y^{\prime } x +\frac {y^{2}}{x}&=y \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

10.318

19945

\begin{align*} x \left (y^{2}-a^{2}+x^{2}\right )+y \left (x^{2}-y^{2}-b^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_exact, _rational]

13.727

19946

\begin{align*} y^{\prime }+\frac {4 x y}{x^{2}+1}&=\frac {1}{\left (x^{2}+1\right )^{3}} \\ \end{align*}

[_linear]

5.497

19947

\begin{align*} x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3.568

19948

\begin{align*} x \left (-x^{2}+1\right ) y^{\prime }+\left (2 x^{2}-1\right ) y&=a \,x^{3} \\ \end{align*}

[_linear]

5.697

19949

\begin{align*} x^{2}+y^{2}+1-2 x y^{\prime } y&=0 \\ \end{align*}

[_rational, _Bernoulli]

8.928

19950

\begin{align*} y^{\prime } y+x&=m \left (-y+y^{\prime } x \right ) \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

50.895

19951

\begin{align*} y^{\prime }+y \cos \left (x \right )&=y^{n} \sin \left (2 x \right ) \\ \end{align*}

[_Bernoulli]

14.674

19952

\begin{align*} \left (x +1\right ) y^{\prime }+1&=2 \,{\mathrm e}^{y} \\ \end{align*}

[_separable]

9.941

19953

\begin{align*} y^{\prime }&=x^{3} y^{3}-y x \\ \end{align*}

[_Bernoulli]

6.005

19954

\begin{align*} y+\left (y^{n} a \,x^{2}-2 x \right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

30.568

19955

\begin{align*} \left (1-3 x^{2} y+6 y^{2}\right ) y^{\prime }&=3 x y^{2}-x^{2} \\ \end{align*}

[_exact, _rational]

6.113

19956

\begin{align*} y \left (a^{2}+x^{2}+y^{2}\right ) y^{\prime }+x \left (y^{2}-a^{2}+x^{2}\right )&=0 \\ \end{align*}

[_exact, _rational]

9.743

19957

\begin{align*} \left (x^{2} y^{3}+y x \right ) y^{\prime }&=1 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

5.847

19958

\begin{align*} y^{\prime } y&=a x \\ \end{align*}

[_separable]

22.668

19959

\begin{align*} y^{\prime } \sqrt {a^{2}+x^{2}}+y&=\sqrt {a^{2}+x^{2}}-x \\ \end{align*}

[_linear]

6.285

19960

\begin{align*} \left (x +y\right ) y^{\prime }+x -y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

11.377

19961

\begin{align*} y^{\prime } y+b y^{2}&=a \cos \left (x \right ) \\ \end{align*}

[_Bernoulli]

11.116

19962

\begin{align*} \left (y^{2}-x^{2}\right ) y^{\prime }+2 y x&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

27.120

19963

\begin{align*} y-y^{\prime } x&=b \left (1+x^{2} y^{\prime }\right ) \\ \end{align*}

[_separable]

6.992

19964

\begin{align*} 3 y+2 x +4-\left (4 x +6 y+5\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

24.232

19965

\begin{align*} \left (x^{3} y^{3}+y^{2} x^{2}+y x +1\right ) y+\left (x^{3} y^{3}-y^{2} x^{2}-y x +1\right ) x y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

0.751

19966

\begin{align*} 2 y^{2} x^{2}+y-\left (x^{3} y-3 x \right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

19.698

19967

\begin{align*} x^{2} y^{\prime }+y^{2}&=x y^{\prime } y \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

40.777

19968

\begin{align*} y^{\prime }+\frac {n y}{x}&=a \,x^{-n} \\ \end{align*}

[_linear]

14.718

19969

\begin{align*} \left (x -y\right )^{2} y^{\prime }&=a^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

12.526

19970

\begin{align*} {y^{\prime }}^{3}+2 x {y^{\prime }}^{2}-y^{2} {y^{\prime }}^{2}-2 y^{2} y^{\prime } x&=0 \\ \end{align*}

[_quadrature]

0.760

19971

\begin{align*} {y^{\prime }}^{2}-a \,x^{3}&=0 \\ \end{align*}

[_quadrature]

2.934

19972

\begin{align*} \left (x +2 y\right ) {y^{\prime }}^{3}+3 \left (x +y\right ) {y^{\prime }}^{2}+\left (2 x +y\right ) y^{\prime }&=0 \\ \end{align*}

[_quadrature]

1.607

19973

\begin{align*} {y^{\prime }}^{3}&=a \,x^{4} \\ \end{align*}

[_quadrature]

3.810

19974

\begin{align*} 4 y^{2} {y^{\prime }}^{2}+2 \left (1+3 x \right ) x y y^{\prime }+3 x^{3}&=0 \\ \end{align*}

[_separable]

1.878

19975

\begin{align*} {y^{\prime }}^{2}-7 y^{\prime }+12&=0 \\ \end{align*}

[_quadrature]

0.526

19976

\begin{align*} x -y^{\prime } y&=a {y^{\prime }}^{2} \\ \end{align*}

[_dAlembert]

77.763

19977

\begin{align*} y&=-a y^{\prime }+\frac {c +a \arcsin \left (y^{\prime }\right )}{\sqrt {1-{y^{\prime }}^{2}}} \\ \end{align*}

[_quadrature]

150.202

19978

\begin{align*} 4 y&={y^{\prime }}^{2}+x^{2} \\ \end{align*}

[[_homogeneous, ‘class G‘]]

5.419

19979

\begin{align*} x {y^{\prime }}^{2}-2 y^{\prime } y+a x&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.427

19980

\begin{align*} y&=2 y^{\prime }+3 {y^{\prime }}^{2} \\ \end{align*}

[_quadrature]

3.081

19981

\begin{align*} \left (1+{y^{\prime }}^{2}\right ) x&=1 \\ \end{align*}

[_quadrature]

0.798

19982

\begin{align*} x^{2}&=a^{2} \left (1+{y^{\prime }}^{2}\right ) \\ \end{align*}

[_quadrature]

1.485

19983

\begin{align*} y^{2}&=a^{2} \left (1+{y^{\prime }}^{2}\right ) \\ \end{align*}

[_quadrature]

3.029

19984

\begin{align*} y^{2}+x y^{\prime } y-x^{2} {y^{\prime }}^{2}&=0 \\ \end{align*}

[_separable]

0.430

19985

\begin{align*} y&=y {y^{\prime }}^{2}+2 y^{\prime } x \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.687

19986

\begin{align*} y&=x \left (1+y^{\prime }\right )+{y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

3.323

19987

\begin{align*} x^{2} \left (y-y^{\prime } x \right )&=y {y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

5.001

19988

\begin{align*} y&=y^{\prime } x +\arcsin \left (y^{\prime }\right ) \\ \end{align*}

[_Clairaut]

2.891

19989

\begin{align*} {\mathrm e}^{4 x} \left (y^{\prime }-1\right )+{\mathrm e}^{2 y} {y^{\prime }}^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

7.891

19990

\begin{align*} x y \left (y-y^{\prime } x \right )&=y^{\prime } y+x \\ \end{align*}

[_separable]

13.646

19991

\begin{align*} y^{\prime }+2 y x&=y^{2}+x^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

5.429

19992

\begin{align*} x^{2} {y^{\prime }}^{2}-2 x y^{\prime } y+2 y^{2}-x^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7.705

19993

\begin{align*} y&=y^{\prime } \left (-b +x \right )+\frac {a}{y^{\prime }} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

1.074

19994

\begin{align*} x y^{2} \left ({y^{\prime }}^{2}+2\right )&=2 y^{3} y^{\prime }+x^{3} \\ \end{align*}

[_separable]

2.971

19995

\begin{align*} y&=-y^{\prime } x +x^{4} {y^{\prime }}^{2} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

1.561

19996

\begin{align*} {y^{\prime }}^{2}-9 y^{\prime }+18&=0 \\ \end{align*}

[_quadrature]

0.462

19997

\begin{align*} a y {y^{\prime }}^{2}+\left (2 x -b \right ) y^{\prime }-y&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

5.000

19998

\begin{align*} \left (-y+y^{\prime } x \right )^{2}&=a \left (1+{y^{\prime }}^{2}\right ) \left (y^{2}+x^{2}\right )^{{3}/{2}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

703.941

19999

\begin{align*} \left (-y+y^{\prime } x \right )^{2}&={y^{\prime }}^{2}-\frac {2 y y^{\prime }}{x}+1 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

253.092

20000

\begin{align*} 3 y^{2} {y^{\prime }}^{2}-2 x y^{\prime } y-x^{2}+4 y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

4.672