| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{2}+\left (x^{2}+y x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
131.329 |
|
| \begin{align*}
x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.706 |
|
| \begin{align*}
\left (3 x +4 y\right ) y^{\prime }+y-2 x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
91.762 |
|
| \begin{align*}
3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
133.328 |
|
| \begin{align*}
\left (y-3 x +3\right ) y^{\prime }&=2 y-x -4 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
145.332 |
|
| \begin{align*}
x^{2}-4 y x -2 y^{2}+\left (y^{2}-4 y x -2 x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
31.047 |
|
| \begin{align*}
x +y^{\prime } y+\frac {-y+y^{\prime } x}{y^{2}+x^{2}}&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _exact, _rational] |
✓ |
✓ |
✓ |
✗ |
6.881 |
|
| \begin{align*}
a^{2}-2 y x -y^{2}-\left (x +y\right )^{2} y^{\prime }&=0 \\
\end{align*} |
[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
6.166 |
|
| \begin{align*}
2 a x +b y+g +\left (2 c y+b x +e \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
37.828 |
|
| \begin{align*}
\left (2 x^{2} y+4 x^{3}-12 x y^{2}+3 y^{2}-x \,{\mathrm e}^{y}+{\mathrm e}^{2 x}\right ) y^{\prime }+12 x^{2} y+2 x y^{2}+4 x^{3}-4 y^{3}+2 y \,{\mathrm e}^{2 x}-{\mathrm e}^{y}&=0 \\
\end{align*} |
[_exact] |
✓ |
✓ |
✓ |
✗ |
9.449 |
|
| \begin{align*}
y-y^{\prime } x +\ln \left (x \right )&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
8.311 |
|
| \begin{align*}
\left (y x +1\right ) y-x \left (-y x +1\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
27.984 |
|
| \begin{align*}
a \left (y^{\prime } x +2 y\right )&=x y^{\prime } y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
26.100 |
|
| \begin{align*}
{\mathrm e}^{x} x^{4}-2 m x y^{2}+2 m \,x^{2} y y^{\prime }&=0 \\
\end{align*} | [[_homogeneous, ‘class D‘], _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 10.944 |
|
| \begin{align*}
y \left ({\mathrm e}^{x}+2 y x \right )-{\mathrm e}^{x} y^{\prime }&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
31.138 |
|
| \begin{align*}
x^{2} y-2 x y^{2}-\left (x^{3}-3 x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
29.619 |
|
| \begin{align*}
y \left (y x +2 y^{2} x^{2}\right )+x \left (y x -y^{2} x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
1.069 |
|
| \begin{align*}
2 y^{\prime } y+2 x +x^{2}+y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
12.340 |
|
| \begin{align*}
x^{2}+y^{2}-x^{2} y y^{\prime }&=0 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.983 |
|
| \begin{align*}
3 x^{2} y^{4}+2 y x +\left (2 x^{3} y^{3}-x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
14.476 |
|
| \begin{align*}
y^{4}+2 y+\left (x y^{3}+2 y^{4}-4 x \right ) y^{\prime }&=0 \\
\end{align*} |
[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
✓ |
✓ |
✓ |
7.326 |
|
| \begin{align*}
y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
67.564 |
|
| \begin{align*}
2 x^{2} y-3 y^{4}+\left (3 x^{3}+2 x y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
28.137 |
|
| \begin{align*}
y^{2}+2 x^{2} y+\left (2 x^{3}-y x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
25.785 |
|
| \begin{align*}
y^{\prime } x -a y&=x +1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
9.352 |
|
| \begin{align*}
y^{\prime }+y&={\mathrm e}^{-x} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.717 |
|
| \begin{align*}
\cos \left (x \right )^{2} y^{\prime }+y&=\tan \left (x \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
6.244 |
|
| \begin{align*}
\left (x +1\right ) y^{\prime }-n y&={\mathrm e}^{x} \left (x +1\right )^{n +1} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
11.225 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime }+2 y x&=4 x^{2} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.276 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x}&=y^{6} x^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
13.209 |
|
| \begin{align*}
1+y^{2}&=\left (\arctan \left (y\right )-x \right ) y^{\prime } \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]] |
✓ |
✓ |
✓ |
✓ |
14.086 |
|
| \begin{align*}
y^{\prime }+\frac {2 y}{x}&=3 x^{2} y^{{1}/{3}} \\
\end{align*} | [[_homogeneous, ‘class G‘], _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 36.508 |
|
| \begin{align*}
y^{\prime }+\frac {x y}{-x^{2}+1}&=x \sqrt {y} \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
28.033 |
|
| \begin{align*}
3 x \left (-x^{2}+1\right ) y^{2} y^{\prime }+\left (2 x^{2}-1\right ) y^{3}&=a \,x^{3} \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
11.274 |
|
| \begin{align*}
\left (x +y\right )^{2} y^{\prime }&=a^{2} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
29.674 |
|
| \begin{align*}
-y+y^{\prime } x&=\sqrt {y^{2}+x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
51.539 |
|
| \begin{align*}
-y+y^{\prime } x&=x \sqrt {y^{2}+x^{2}} \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
✗ |
✓ |
✓ |
✗ |
40.799 |
|
| \begin{align*}
\sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
35.825 |
|
| \begin{align*}
y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
11.337 |
|
| \begin{align*}
y^{\prime }+\frac {\left (1-2 x \right ) y}{x^{2}}&=1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
5.168 |
|
| \begin{align*}
3 y^{\prime }+\frac {2 y}{x +1}&=\frac {x^{3}}{y^{2}} \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
11.072 |
|
| \begin{align*}
2 x -y+1+\left (2 y-x -1\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
14.711 |
|
| \begin{align*}
y^{\prime }+\frac {y}{\sqrt {-x^{2}+1}}&=\frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✗ |
13.831 |
|
| \begin{align*}
y^{\prime } x +\frac {y^{2}}{x}&=y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
10.318 |
|
| \begin{align*}
x \left (y^{2}-a^{2}+x^{2}\right )+y \left (x^{2}-y^{2}-b^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, _rational] |
✓ |
✓ |
✓ |
✗ |
13.727 |
|
| \begin{align*}
y^{\prime }+\frac {4 x y}{x^{2}+1}&=\frac {1}{\left (x^{2}+1\right )^{3}} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
5.497 |
|
| \begin{align*}
x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
3.568 |
|
| \begin{align*}
x \left (-x^{2}+1\right ) y^{\prime }+\left (2 x^{2}-1\right ) y&=a \,x^{3} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
5.697 |
|
| \begin{align*}
x^{2}+y^{2}+1-2 x y^{\prime } y&=0 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
8.928 |
|
| \begin{align*}
y^{\prime } y+x&=m \left (-y+y^{\prime } x \right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
50.895 |
|
| \begin{align*}
y^{\prime }+y \cos \left (x \right )&=y^{n} \sin \left (2 x \right ) \\
\end{align*} | [_Bernoulli] | ✓ | ✓ | ✓ | ✓ | 14.674 |
|
| \begin{align*}
\left (x +1\right ) y^{\prime }+1&=2 \,{\mathrm e}^{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
9.941 |
|
| \begin{align*}
y^{\prime }&=x^{3} y^{3}-y x \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.005 |
|
| \begin{align*}
y+\left (y^{n} a \,x^{2}-2 x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
30.568 |
|
| \begin{align*}
\left (1-3 x^{2} y+6 y^{2}\right ) y^{\prime }&=3 x y^{2}-x^{2} \\
\end{align*} |
[_exact, _rational] |
✓ |
✓ |
✓ |
✗ |
6.113 |
|
| \begin{align*}
y \left (a^{2}+x^{2}+y^{2}\right ) y^{\prime }+x \left (y^{2}-a^{2}+x^{2}\right )&=0 \\
\end{align*} |
[_exact, _rational] |
✓ |
✓ |
✓ |
✗ |
9.743 |
|
| \begin{align*}
\left (x^{2} y^{3}+y x \right ) y^{\prime }&=1 \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
✓ |
✓ |
✓ |
5.847 |
|
| \begin{align*}
y^{\prime } y&=a x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
22.668 |
|
| \begin{align*}
y^{\prime } \sqrt {a^{2}+x^{2}}+y&=\sqrt {a^{2}+x^{2}}-x \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
6.285 |
|
| \begin{align*}
\left (x +y\right ) y^{\prime }+x -y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
11.377 |
|
| \begin{align*}
y^{\prime } y+b y^{2}&=a \cos \left (x \right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
11.116 |
|
| \begin{align*}
\left (y^{2}-x^{2}\right ) y^{\prime }+2 y x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
27.120 |
|
| \begin{align*}
y-y^{\prime } x&=b \left (1+x^{2} y^{\prime }\right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.992 |
|
| \begin{align*}
3 y+2 x +4-\left (4 x +6 y+5\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
24.232 |
|
| \begin{align*}
\left (x^{3} y^{3}+y^{2} x^{2}+y x +1\right ) y+\left (x^{3} y^{3}-y^{2} x^{2}-y x +1\right ) x y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
0.751 |
|
| \begin{align*}
2 y^{2} x^{2}+y-\left (x^{3} y-3 x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
19.698 |
|
| \begin{align*}
x^{2} y^{\prime }+y^{2}&=x y^{\prime } y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
40.777 |
|
| \begin{align*}
y^{\prime }+\frac {n y}{x}&=a \,x^{-n} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✗ |
14.718 |
|
| \begin{align*}
\left (x -y\right )^{2} y^{\prime }&=a^{2} \\
\end{align*} | [[_homogeneous, ‘class C‘], _dAlembert] | ✓ | ✓ | ✓ | ✓ | 12.526 |
|
| \begin{align*}
{y^{\prime }}^{3}+2 x {y^{\prime }}^{2}-y^{2} {y^{\prime }}^{2}-2 y^{2} y^{\prime } x&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.760 |
|
| \begin{align*}
{y^{\prime }}^{2}-a \,x^{3}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.934 |
|
| \begin{align*}
\left (x +2 y\right ) {y^{\prime }}^{3}+3 \left (x +y\right ) {y^{\prime }}^{2}+\left (2 x +y\right ) y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.607 |
|
| \begin{align*}
{y^{\prime }}^{3}&=a \,x^{4} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.810 |
|
| \begin{align*}
4 y^{2} {y^{\prime }}^{2}+2 \left (1+3 x \right ) x y y^{\prime }+3 x^{3}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.878 |
|
| \begin{align*}
{y^{\prime }}^{2}-7 y^{\prime }+12&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.526 |
|
| \begin{align*}
x -y^{\prime } y&=a {y^{\prime }}^{2} \\
\end{align*} |
[_dAlembert] |
✓ |
✓ |
✓ |
✗ |
77.763 |
|
| \begin{align*}
y&=-a y^{\prime }+\frac {c +a \arcsin \left (y^{\prime }\right )}{\sqrt {1-{y^{\prime }}^{2}}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
150.202 |
|
| \begin{align*}
4 y&={y^{\prime }}^{2}+x^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
5.419 |
|
| \begin{align*}
x {y^{\prime }}^{2}-2 y^{\prime } y+a x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✗ |
✓ |
2.427 |
|
| \begin{align*}
y&=2 y^{\prime }+3 {y^{\prime }}^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.081 |
|
| \begin{align*}
\left (1+{y^{\prime }}^{2}\right ) x&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.798 |
|
| \begin{align*}
x^{2}&=a^{2} \left (1+{y^{\prime }}^{2}\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.485 |
|
| \begin{align*}
y^{2}&=a^{2} \left (1+{y^{\prime }}^{2}\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.029 |
|
| \begin{align*}
y^{2}+x y^{\prime } y-x^{2} {y^{\prime }}^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.430 |
|
| \begin{align*}
y&=y {y^{\prime }}^{2}+2 y^{\prime } x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.687 |
|
| \begin{align*}
y&=x \left (1+y^{\prime }\right )+{y^{\prime }}^{2} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
3.323 |
|
| \begin{align*}
x^{2} \left (y-y^{\prime } x \right )&=y {y^{\prime }}^{2} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
5.001 |
|
| \begin{align*}
y&=y^{\prime } x +\arcsin \left (y^{\prime }\right ) \\
\end{align*} | [_Clairaut] | ✓ | ✓ | ✓ | ✗ | 2.891 |
|
| \begin{align*}
{\mathrm e}^{4 x} \left (y^{\prime }-1\right )+{\mathrm e}^{2 y} {y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
7.891 |
|
| \begin{align*}
x y \left (y-y^{\prime } x \right )&=y^{\prime } y+x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
13.646 |
|
| \begin{align*}
y^{\prime }+2 y x&=y^{2}+x^{2} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
✓ |
✓ |
✓ |
5.429 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}-2 x y^{\prime } y+2 y^{2}-x^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
7.705 |
|
| \begin{align*}
y&=y^{\prime } \left (-b +x \right )+\frac {a}{y^{\prime }} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✗ |
1.074 |
|
| \begin{align*}
x y^{2} \left ({y^{\prime }}^{2}+2\right )&=2 y^{3} y^{\prime }+x^{3} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.971 |
|
| \begin{align*}
y&=-y^{\prime } x +x^{4} {y^{\prime }}^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
1.561 |
|
| \begin{align*}
{y^{\prime }}^{2}-9 y^{\prime }+18&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.462 |
|
| \begin{align*}
a y {y^{\prime }}^{2}+\left (2 x -b \right ) y^{\prime }-y&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
5.000 |
|
| \begin{align*}
\left (-y+y^{\prime } x \right )^{2}&=a \left (1+{y^{\prime }}^{2}\right ) \left (y^{2}+x^{2}\right )^{{3}/{2}} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
703.941 |
|
| \begin{align*}
\left (-y+y^{\prime } x \right )^{2}&={y^{\prime }}^{2}-\frac {2 y y^{\prime }}{x}+1 \\
\end{align*} |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
✗ |
✓ |
✓ |
✗ |
253.092 |
|
| \begin{align*}
3 y^{2} {y^{\prime }}^{2}-2 x y^{\prime } y-x^{2}+4 y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.672 |
|