Internal
problem
ID
[19743] Book
:
Elementary
Differential
Equations.
By
Thornton
C.
Fry.
D
Van
Nostrand.
NY.
First
Edition
(1929) Section
:
Chapter
IV.
Methods
of
solution:
First
order
equations.
section
33.
Problems
at
page
91 Problem
number
:
9
(b) Date
solved
:
Friday, November 28, 2025 at 06:47:35 PM CAS
classification
:
[_separable]
Solved using first_order_ode_separable
Time used: 0.419 (sec)
Solve
\begin{align*}
\sqrt {-u^{2}+1}\, v^{\prime }&=2 u \sqrt {1-v^{2}} \\
\end{align*}
The ode
\begin{equation}
v^{\prime } = \frac {2 u \sqrt {-\left (v-1\right ) \left (v+1\right )}}{\sqrt {-\left (u -1\right ) \left (u +1\right )}}
\end{equation}
is separable as it can be written as
\begin{align*} v^{\prime }&= \frac {2 u \sqrt {-\left (v-1\right ) \left (v+1\right )}}{\sqrt {-\left (u -1\right ) \left (u +1\right )}}\\ &= f(u) g(v) \end{align*}
Where
\begin{align*} f(u) &= \frac {2 u}{\sqrt {-\left (u -1\right ) \left (u +1\right )}}\\ g(v) &= \sqrt {-\left (v -1\right ) \left (v +1\right )} \end{align*}
We now need to find the singular solutions, these are found by finding
for what values \(g(v)\) is zero, since we had to divide by this above. Solving \(g(v)=0\) or
\[
\sqrt {-\left (v -1\right ) \left (v +1\right )}=0
\]
for \(v\) gives
\begin{align*} v&=-1\\ v&=1 \end{align*}
Now we go over each such singular solution and check if it verifies the ode itself and any initial
conditions given. If it does not then the singular solution will not be used.
Therefore the solutions found are
\begin{align*}
\arcsin \left (v\right ) &= -2 \sqrt {-u^{2}+1}+c_1 \\
v &= -1 \\
v &= 1 \\
\end{align*}
Solving for \(v\) gives
\begin{align*}
v &= -1 \\
v &= 1 \\
v &= \sin \left (-2 \sqrt {-u^{2}+1}+c_1 \right ) \\
\end{align*}
Methodsfor first order ODEs:---Trying classification methods ---tryinga quadraturetrying1st order lineartryingBernoullitryingseparable<-separable successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \sqrt {-u^{2}+1}\, \left (\frac {d}{d u}v \left (u \right )\right )=2 u \sqrt {1-v \left (u \right )^{2}} \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d u}v \left (u \right ) \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d u}v \left (u \right )=\frac {2 u \sqrt {1-v \left (u \right )^{2}}}{\sqrt {-u^{2}+1}} \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {\frac {d}{d u}v \left (u \right )}{\sqrt {1-v \left (u \right )^{2}}}=\frac {2 u}{\sqrt {-u^{2}+1}} \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} u \\ {} & {} & \int \frac {\frac {d}{d u}v \left (u \right )}{\sqrt {1-v \left (u \right )^{2}}}d u =\int \frac {2 u}{\sqrt {-u^{2}+1}}d u +\mathit {C1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & \arcsin \left (v \left (u \right )\right )=\frac {2 \left (u -1\right ) \left (u +1\right )}{\sqrt {-u^{2}+1}}+\mathit {C1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} v \left (u \right ) \\ {} & {} & v \left (u \right )=\sin \left (\frac {\mathit {C1} \sqrt {-u^{2}+1}+2 u^{2}-2}{\sqrt {-u^{2}+1}}\right ) \end {array} \]
✓ Mathematica. Time used: 0.228 (sec). Leaf size: 44