2.4.2 Problem 2
Internal
problem
ID
[19724]
Book
:
Elementary
Differential
Equations.
By
Thornton
C.
Fry.
D
Van
Nostrand.
NY.
First
Edition
(1929)
Section
:
Chapter
IV.
Methods
of
solution:
First
order
equations.
section
31.
Problems
at
page
85
Problem
number
:
2
Date
solved
:
Friday, November 28, 2025 at 06:38:16 PM
CAS
classification
:
[_linear]
Solved using first_order_ode_linear
Time used: 0.052 (sec)
Solve
\begin{align*}
y^{\prime }+\frac {y}{x}&=\sin \left (x \right ) \\
\end{align*}
In canonical form a linear first order is
\begin{align*} y^{\prime } + q(x)y &= p(x) \end{align*}
Comparing the above to the given ode shows that
\begin{align*} q(x) &=\frac {1}{x}\\ p(x) &=\sin \left (x \right ) \end{align*}
The integrating factor \(\mu \) is
\begin{align*} \mu &= e^{\int {q\,dx}}\\ &= {\mathrm e}^{\int \frac {1}{x}d x}\\ &= x \end{align*}
The ode becomes
\begin{align*}
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}}\left ( \mu y\right ) &= \mu p \\
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}}\left ( \mu y\right ) &= \left (\mu \right ) \left (\sin \left (x \right )\right ) \\
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}} \left (y x\right ) &= \left (x\right ) \left (\sin \left (x \right )\right ) \\
\mathrm {d} \left (y x\right ) &= \left (\sin \left (x \right ) x\right )\, \mathrm {d} x \\
\end{align*}
Integrating gives
\begin{align*} y x&= \int {\sin \left (x \right ) x \,dx} \\ &=-x \cos \left (x \right )+\sin \left (x \right ) + c_1 \end{align*}
Dividing throughout by the integrating factor \(x\) gives the final solution
\[ y = \frac {\sin \left (x \right )-x \cos \left (x \right )+c_1}{x} \]
Figure 2.54: Slope field \(y^{\prime }+\frac {y}{x} = \sin \left (x \right )\)
Summary of solutions found
\begin{align*}
y &= \frac {\sin \left (x \right )-x \cos \left (x \right )+c_1}{x} \\
\end{align*}
Solved using first_order_ode_exact
Time used: 0.076 (sec)
To solve an ode of the form
\begin{equation} M\left ( x,y\right ) +N\left ( x,y\right ) \frac {dy}{dx}=0\tag {A}\end{equation}
We assume there exists a function
\(\phi \left ( x,y\right ) =c\) where
\(c\) is constant,
that satisfies the ode. Taking derivative of
\(\phi \) w.r.t.
\(x\) gives
\[ \frac {d}{dx}\phi \left ( x,y\right ) =0 \]
Hence
\begin{equation} \frac {\partial \phi }{\partial x}+\frac {\partial \phi }{\partial y}\frac {dy}{dx}=0\tag {B}\end{equation}
Comparing (A,B) shows
that
\begin{align*} \frac {\partial \phi }{\partial x} & =M\\ \frac {\partial \phi }{\partial y} & =N \end{align*}
But since \(\frac {\partial ^{2}\phi }{\partial x\partial y}=\frac {\partial ^{2}\phi }{\partial y\partial x}\) then for the above to be valid, we require that
\[ \frac {\partial M}{\partial y}=\frac {\partial N}{\partial x}\]
If the above condition is satisfied, then
the original ode is called exact. We still need to determine
\(\phi \left ( x,y\right ) \) but at least we know now that we can
do that since the condition
\(\frac {\partial ^{2}\phi }{\partial x\partial y}=\frac {\partial ^{2}\phi }{\partial y\partial x}\) is satisfied. If this condition is not satisfied then this method will not
work and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness, which
is
\[ M(x,y) \mathop {\mathrm {d}x}+ N(x,y) \mathop {\mathrm {d}y}=0 \tag {1A} \]
Therefore
\begin{align*} \left (x\right )\mathop {\mathrm {d}y} &= \left (-y +\sin \left (x \right ) x\right )\mathop {\mathrm {d}x}\\ \left (y -\sin \left (x \right ) x\right )\mathop {\mathrm {d}x} + \left (x\right )\mathop {\mathrm {d}y} &= 0 \tag {2A} \end{align*}
Comparing (1A) and (2A) shows that
\begin{align*} M(x,y) &= y -\sin \left (x \right ) x\\ N(x,y) &= x \end{align*}
The next step is to determine if the ODE is is exact or not. The ODE is exact when the following
condition is satisfied
\[ \frac {\partial M}{\partial y} = \frac {\partial N}{\partial x} \]
Using result found above gives
\begin{align*} \frac {\partial M}{\partial y} &= \frac {\partial }{\partial y} \left (y -\sin \left (x \right ) x\right )\\ &= 1 \end{align*}
And
\begin{align*} \frac {\partial N}{\partial x} &= \frac {\partial }{\partial x} \left (x\right )\\ &= 1 \end{align*}
Since \(\frac {\partial M}{\partial y}= \frac {\partial N}{\partial x}\) , then the ODE is exact The following equations are now set up to solve for the function \(\phi \left (x,y\right )\)
\begin{align*} \frac {\partial \phi }{\partial x } &= M\tag {1} \\ \frac {\partial \phi }{\partial y } &= N\tag {2} \end{align*}
Integrating (2) w.r.t. \(y\) gives
\begin{align*}
\int \frac {\partial \phi }{\partial y} \mathop {\mathrm {d}y} &= \int N\mathop {\mathrm {d}y} \\
\int \frac {\partial \phi }{\partial y} \mathop {\mathrm {d}y} &= \int x\mathop {\mathrm {d}y} \\
\tag{3} \phi &= y x+ f(x) \\
\end{align*}
Where
\(f(x)\) is used for the constant of integration since
\(\phi \) is a function of
both
\(x\) and
\(y\) . Taking derivative of equation (3) w.r.t
\(x\) gives
\begin{equation}
\tag{4} \frac {\partial \phi }{\partial x} = y+f'(x)
\end{equation}
But equation (1) says that
\(\frac {\partial \phi }{\partial x} = y -\sin \left (x \right ) x\) . Therefore
equation (4) becomes
\begin{equation}
\tag{5} y -\sin \left (x \right ) x = y+f'(x)
\end{equation}
Solving equation (5) for
\( f'(x)\) gives
\[
f'(x) = -\sin \left (x \right ) x
\]
Integrating the above w.r.t
\(x\) gives
\begin{align*}
\int f'(x) \mathop {\mathrm {d}x} &= \int \left ( -\sin \left (x \right ) x\right ) \mathop {\mathrm {d}x} \\
f(x) &= x \cos \left (x \right )-\sin \left (x \right )+ c_1 \\
\end{align*}
Where
\(c_1\) is constant of integration. Substituting result found above for
\(f(x)\) into equation (3)
gives
\(\phi \) \[
\phi = y x +x \cos \left (x \right )-\sin \left (x \right )+ c_1
\]
But since
\(\phi \) itself is a constant function, then let
\(\phi =c_2\) where
\(c_2\) is new constant and
combining
\(c_1\) and
\(c_2\) constants into the constant
\(c_1\) gives the solution as
\[
c_1 = y x +x \cos \left (x \right )-\sin \left (x \right )
\]
Solving for
\(y\) gives
\begin{align*}
y &= \frac {\sin \left (x \right )-x \cos \left (x \right )+c_1}{x} \\
\end{align*}
Figure 2.55: Slope field \(y^{\prime }+\frac {y}{x} = \sin \left (x \right )\)
Summary of solutions found
\begin{align*}
y &= \frac {\sin \left (x \right )-x \cos \left (x \right )+c_1}{x} \\
\end{align*}
✓ Maple. Time used: 0.000 (sec). Leaf size: 17
ode := diff ( y ( x ), x )+ y ( x )/ x = sin(x);
dsolve ( ode , y ( x ), singsol=all);
\[
y = \frac {\sin \left (x \right )-\cos \left (x \right ) x +c_1}{x}
\]
Maple trace
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )+\frac {y \left (x \right )}{x}=\sin \left (x \right ) \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d x}y \left (x \right ) \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=-\frac {y \left (x \right )}{x}+\sin \left (x \right ) \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y \left (x \right )\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )+\frac {y \left (x \right )}{x}=\sin \left (x \right ) \\ \bullet & {} & \textrm {The ODE is linear; multiply by an integrating factor}\hspace {3pt} \mu \left (x \right ) \\ {} & {} & \mu \left (x \right ) \left (\frac {d}{d x}y \left (x \right )+\frac {y \left (x \right )}{x}\right )=\mu \left (x \right ) \sin \left (x \right ) \\ \bullet & {} & \textrm {Assume the lhs of the ODE is the total derivative}\hspace {3pt} \frac {d}{d x}\left (y \left (x \right ) \mu \left (x \right )\right ) \\ {} & {} & \mu \left (x \right ) \left (\frac {d}{d x}y \left (x \right )+\frac {y \left (x \right )}{x}\right )=\left (\frac {d}{d x}y \left (x \right )\right ) \mu \left (x \right )+y \left (x \right ) \left (\frac {d}{d x}\mu \left (x \right )\right ) \\ \bullet & {} & \textrm {Isolate}\hspace {3pt} \frac {d}{d x}\mu \left (x \right ) \\ {} & {} & \frac {d}{d x}\mu \left (x \right )=\frac {\mu \left (x \right )}{x} \\ \bullet & {} & \textrm {Solve to find the integrating factor}\hspace {3pt} \\ {} & {} & \mu \left (x \right )=x \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \left (\frac {d}{d x}\left (y \left (x \right ) \mu \left (x \right )\right )\right )d x =\int \mu \left (x \right ) \sin \left (x \right )d x +\mathit {C1} \\ \bullet & {} & \textrm {Evaluate the integral on the lhs}\hspace {3pt} \\ {} & {} & y \left (x \right ) \mu \left (x \right )=\int \mu \left (x \right ) \sin \left (x \right )d x +\mathit {C1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} y \left (x \right ) \\ {} & {} & y \left (x \right )=\frac {\int \mu \left (x \right ) \sin \left (x \right )d x +\mathit {C1}}{\mu \left (x \right )} \\ \bullet & {} & \textrm {Substitute}\hspace {3pt} \mu \left (x \right )=x \\ {} & {} & y \left (x \right )=\frac {\int \sin \left (x \right ) x d x +\mathit {C1}}{x} \\ \bullet & {} & \textrm {Evaluate the integrals on the rhs}\hspace {3pt} \\ {} & {} & y \left (x \right )=\frac {\sin \left (x \right )-\cos \left (x \right ) x +\mathit {C1}}{x} \end {array} \]
✓ Mathematica. Time used: 0.025 (sec). Leaf size: 19
ode = D [ y [ x ], x ]+ y [ x ]/ x == Sin [ x ];
ic ={};
DSolve [{ ode , ic }, y [ x ], x , IncludeSingularSolutions -> True ]
\begin{align*} y(x)&\to \frac {\sin (x)-x \cos (x)+c_1}{x} \end{align*}
✓ Sympy. Time used: 0.159 (sec). Leaf size: 14
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(-sin(x) + Derivative(y(x), x) + y(x)/x,0)
ics = {}
dsolve ( ode , func = y ( x ), ics = ics )
\[
y{\left (x \right )} = \frac {C_{1}}{x} - \cos {\left (x \right )} + \frac {\sin {\left (x \right )}}{x}
\]