2.8.1 Problem 1
Internal
problem
ID
[19762]
Book
:
Elementary
Differential
Equations.
By
Thornton
C.
Fry.
D
Van
Nostrand.
NY.
First
Edition
(1929)
Section
:
Chapter
VII.
Linear
equations
of
order
higher
than
the
first.
section
63.
Problems
at
page
196
Problem
number
:
1
Date
solved
:
Friday, November 28, 2025 at 06:51:28 PM
CAS
classification
:
[[_3rd_order, _missing_x]]
Solve
\begin{align*}
y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y&=0 \\
\end{align*}
Solved as higher order constant coeff ode
Time used: 0.051 (sec)
The characteristic equation is
\[ \lambda ^{3}-\lambda ^{2}-\lambda +1 = 0 \]
The roots of the above equation are
\begin{align*} \lambda _1 &= -1\\ \lambda _2 &= 1\\ \lambda _3 &= 1 \end{align*}
Therefore the homogeneous solution is
\[ y_h(x)={\mathrm e}^{-x} c_1 +c_2 \,{\mathrm e}^{x}+x \,{\mathrm e}^{x} c_3 \]
The fundamental set of solutions for the homogeneous
solution are the following
\begin{align*} y_1 &= {\mathrm e}^{-x}\\ y_2 &= {\mathrm e}^{x}\\ y_3 &= x \,{\mathrm e}^{x} \end{align*}
✓ Maple. Time used: 0.002 (sec). Leaf size: 19
ode:=diff(diff(diff(y(x),x),x),x)-diff(diff(y(x),x),x)-diff(y(x),x)+y(x) = 0;
dsolve(ode,y(x), singsol=all);
\[
y = c_1 \,{\mathrm e}^{-x}+{\mathrm e}^{x} \left (c_3 x +c_2 \right )
\]
Maple trace
Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \frac {d^{3}}{d x^{3}}y \left (x \right )-\frac {d^{2}}{d x^{2}}y \left (x \right )-\frac {d}{d x}y \left (x \right )+y \left (x \right )=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 3 \\ {} & {} & \frac {d^{3}}{d x^{3}}y \left (x \right ) \\ \bullet & {} & \textrm {Characteristic polynomial of ODE}\hspace {3pt} \\ {} & {} & r^{3}-r^{2}-r +1=0 \\ \bullet & {} & \textrm {Roots of the characteristic polynomial and corresponding multiplicities}\hspace {3pt} \\ {} & {} & r =\left [\left [-1, 1\right ], \left [1, 2\right ]\right ] \\ \bullet & {} & \textrm {Solution from}\hspace {3pt} r =-1 \\ {} & {} & y_{1}\left (x \right )={\mathrm e}^{-x} \\ \bullet & {} & \textrm {1st solution from}\hspace {3pt} r =1 \\ {} & {} & y_{2}\left (x \right )={\mathrm e}^{x} \\ \bullet & {} & \textrm {2nd solution from}\hspace {3pt} r =1 \\ {} & {} & y_{3}\left (x \right )=x \,{\mathrm e}^{x} \\ \bullet & {} & \textrm {General solution of the ODE}\hspace {3pt} \\ {} & {} & y \left (x \right )=\mathit {C1} y_{1}\left (x \right )+\mathit {C2} y_{2}\left (x \right )+\mathit {C3} y_{3}\left (x \right ) \\ \bullet & {} & \textrm {Substitute in solutions and simplify}\hspace {3pt} \\ {} & {} & y \left (x \right )={\mathrm e}^{x} \left (\mathit {C3} x +\mathit {C2} \right )+\mathit {C1} \,{\mathrm e}^{-x} \end {array} \]
✓ Mathematica. Time used: 0.002 (sec). Leaf size: 25
ode=D[y[x],{x,3}]-D[y[x],{x,2}]-D[y[x],x]+y[x]==0;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*} y(x)&\to c_1 e^{-x}+e^x (c_3 x+c_2) \end{align*}
✓ Sympy. Time used: 0.101 (sec). Leaf size: 15
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(y(x) - Derivative(y(x), x) - Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
\[
y{\left (x \right )} = C_{3} e^{- x} + \left (C_{1} + C_{2} x\right ) e^{x}
\]