Internal
problem
ID
[19744] Book
:
Elementary
Differential
Equations.
By
Thornton
C.
Fry.
D
Van
Nostrand.
NY.
First
Edition
(1929) Section
:
Chapter
IV.
Methods
of
solution:
First
order
equations.
section
33.
Problems
at
page
91 Problem
number
:
9
(c) Date
solved
:
Saturday, November 29, 2025 at 04:46:17 PM CAS
classification
:
[_quadrature]
Methodsfor first order ODEs:->Solving 1st order ODE of high degree, 1st attempttrying1st order WeierstrassP solution for high degree ODEtrying1st order WeierstrassPPrime solution for high degree ODEtrying1st order JacobiSN solution for high degree ODEtrying1st order ODE linearizable_by_differentiationtryingdifferential order: 1; missing variables<-differential order: 1; missing y(x) successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \sqrt {1+\frac {d}{d u}v \left (u \right )}=\frac {{\mathrm e}^{u}}{2} \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d u}v \left (u \right ) \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d u}v \left (u \right )=\frac {\left ({\mathrm e}^{u}\right )^{2}}{4}-1 \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} u \\ {} & {} & \int \left (\frac {d}{d u}v \left (u \right )\right )d u =\int \left (\frac {\left ({\mathrm e}^{u}\right )^{2}}{4}-1\right )d u +\mathit {C1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & v \left (u \right )=-u +\frac {\left ({\mathrm e}^{u}\right )^{2}}{8}+\mathit {C1} \\ \bullet & {} & \textrm {Simplify}\hspace {3pt} \\ {} & {} & v \left (u \right )=-u +\frac {{\mathrm e}^{2 u}}{8}+\mathit {C1} \end {array} \]
✓ Mathematica. Time used: 0.012 (sec). Leaf size: 20