2.8.2 Problem 2
Internal
problem
ID
[19763]
Book
:
Elementary
Differential
Equations.
By
Thornton
C.
Fry.
D
Van
Nostrand.
NY.
First
Edition
(1929)
Section
:
Chapter
VII.
Linear
equations
of
order
higher
than
the
first.
section
63.
Problems
at
page
196
Problem
number
:
2
Date
solved
:
Friday, November 28, 2025 at 06:51:35 PM
CAS
classification
:
[[_high_order, _missing_y]]
Solve
\begin{align*}
y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }&={\mathrm e}^{2 x} \\
\end{align*}
Solved as higher order constant coeff ode
Time used: 0.165 (sec)
The characteristic equation is
\[ \lambda ^{4}-3 \lambda ^{3}+3 \lambda ^{2}-\lambda = 0 \]
The roots of the above equation are
\begin{align*} \lambda _1 &= 0\\ \lambda _2 &= 1\\ \lambda _3 &= 1\\ \lambda _4 &= 1 \end{align*}
Therefore the homogeneous solution is
\[ y_h(x)=c_1 +c_2 \,{\mathrm e}^{x}+x \,{\mathrm e}^{x} c_3 +x^{2} {\mathrm e}^{x} c_4 \]
The fundamental set of solutions for the homogeneous
solution are the following
\begin{align*} y_1 &= 1\\ y_2 &= {\mathrm e}^{x}\\ y_3 &= x \,{\mathrm e}^{x}\\ y_4 &= x^{2} {\mathrm e}^{x} \end{align*}
This is higher order nonhomogeneous ODE. Let the solution be
\[ y = y_h + y_p \]
Where
\(y_h\) is the solution to the
homogeneous ODE And
\(y_p\) is a particular solution to the nonhomogeneous ODE.
\(y_h\) is the solution to
\[ y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime } = 0 \]
Now the particular solution to the given ODE is found
\[
y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime } = {\mathrm e}^{2 x}
\]
The particular solution is now found using
the method of undetermined coefficients.
Looking at the RHS of the ode, which is
\[ {\mathrm e}^{2 x} \]
Shows that the corresponding undetermined
set of the basis functions (UC_set) for the trial solution is
\[ [\{{\mathrm e}^{2 x}\}] \]
While the set of the basis
functions for the homogeneous solution found earlier is
\[ \{1, x \,{\mathrm e}^{x}, x^{2} {\mathrm e}^{x}, {\mathrm e}^{x}\} \]
Since there is no duplication
between the basis function in the UC_set and the basis functions of the homogeneous
solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_p = A_{1} {\mathrm e}^{2 x}
\]
The
unknowns
\(\{A_{1}\}\) are found by substituting the above trial solution
\(y_p\) into the ODE and comparing
coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
2 A_{1} {\mathrm e}^{2 x} = {\mathrm e}^{2 x}
\]
Solving for
the unknowns by comparing coefficients results in
\[ \left [A_{1} = {\frac {1}{2}}\right ] \]
Substituting the above back in the
above trial solution
\(y_p\), gives the particular solution
\[
y_p = \frac {{\mathrm e}^{2 x}}{2}
\]
Therefore the general solution is
\begin{align*}
y &= y_h + y_p \\
&= \left (c_1 +c_2 \,{\mathrm e}^{x}+x \,{\mathrm e}^{x} c_3 +x^{2} {\mathrm e}^{x} c_4\right ) + \left (\frac {{\mathrm e}^{2 x}}{2}\right ) \\
\end{align*}
✓ Maple. Time used: 0.001 (sec). Leaf size: 33
ode:=diff(diff(diff(diff(y(x),x),x),x),x)-3*diff(diff(diff(y(x),x),x),x)+3*diff(diff(y(x),x),x)-diff(y(x),x) = exp(2*x);
dsolve(ode,y(x), singsol=all);
\[
y = \frac {{\mathrm e}^{2 x}}{2}+\left (\left (x^{2}-2 x +2\right ) c_3 +c_2 x +c_1 -c_2 \right ) {\mathrm e}^{x}+c_4
\]
Maple trace
Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
-> Calling odsolve with the ODE, diff(diff(diff(_b(_a),_a),_a),_a) = 3*diff(
diff(_b(_a),_a),_a)-3*diff(_b(_a),_a)+_b(_a)+exp(2*_a), _b(_a)
*** Sublevel 2 ***
Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful
<- differential order: 4; linear nonhomogeneous with symmetry [0,1] successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \frac {d^{4}}{d x^{4}}y \left (x \right )-3 \frac {d^{3}}{d x^{3}}y \left (x \right )+3 \frac {d^{2}}{d x^{2}}y \left (x \right )-\frac {d}{d x}y \left (x \right )={\mathrm e}^{2 x} \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 4 \\ {} & {} & \frac {d^{4}}{d x^{4}}y \left (x \right ) \\ \bullet & {} & \textrm {Characteristic polynomial of homogeneous ODE}\hspace {3pt} \\ {} & {} & r^{4}-3 r^{3}+3 r^{2}-r =0 \\ \bullet & {} & \textrm {Roots of the characteristic polynomial and corresponding multiplicities}\hspace {3pt} \\ {} & {} & r =\left [\left [0, 1\right ], \left [1, 3\right ]\right ] \\ \bullet & {} & \textrm {Homogeneous solution from}\hspace {3pt} r =0 \\ {} & {} & y_{1}\left (x \right )=1 \\ \bullet & {} & \textrm {1st homogeneous solution from}\hspace {3pt} r =1 \\ {} & {} & y_{2}\left (x \right )={\mathrm e}^{x} \\ \bullet & {} & \textrm {2nd homogeneous solution from}\hspace {3pt} r =1 \\ {} & {} & y_{3}\left (x \right )=x \,{\mathrm e}^{x} \\ \bullet & {} & \textrm {3rd homogeneous solution from}\hspace {3pt} r =1 \\ {} & {} & y_{4}\left (x \right )=x^{2} {\mathrm e}^{x} \\ \bullet & {} & \textrm {General solution of the ODE}\hspace {3pt} \\ {} & {} & y \left (x \right )=\mathit {C1} y_{1}\left (x \right )+\mathit {C2} y_{2}\left (x \right )+\mathit {C3} y_{3}\left (x \right )+\mathit {C4} y_{4}\left (x \right )+y_{p}\left (x \right ) \\ \bullet & {} & \textrm {Substitute in solutions of the homogeneous ODE}\hspace {3pt} \\ {} & {} & y \left (x \right )=\mathit {C1} +\mathit {C2} \,{\mathrm e}^{x}+\mathit {C3} x \,{\mathrm e}^{x}+\mathit {C4} \,x^{2} {\mathrm e}^{x}+y_{p}\left (x \right ) \\ \square & {} & \textrm {Find a particular solution}\hspace {3pt} y_{p}\left (x \right )\hspace {3pt}\textrm {of the ODE}\hspace {3pt} \\ {} & \circ & \textrm {Define the forcing function of the ODE}\hspace {3pt} \\ {} & {} & f \left (x \right )={\mathrm e}^{2 x} \\ {} & \circ & \textrm {Form of the particular solution to the ODE where the}\hspace {3pt} u_{i}\left (x \right )\hspace {3pt}\textrm {are to be found}\hspace {3pt} \\ {} & {} & y_{p}\left (x \right )=\moverset {4}{\munderset {i =1}{\sum }}u_{i}\left (x \right ) y_{i}\left (x \right ) \\ {} & \circ & \textrm {Calculate the 1st derivative of}\hspace {3pt} y_{p}\left (x \right ) \\ {} & {} & \frac {d}{d x}y_{p}\left (x \right )=\moverset {4}{\munderset {i =1}{\sum }}\left (\left (\frac {d}{d x}u_{i}\left (x \right )\right ) y_{i}\left (x \right )+u_{i}\left (x \right ) \left (\frac {d}{d x}y_{i}\left (x \right )\right )\right ) \\ {} & \circ & \textrm {Choose equation to add to a system of equations in}\hspace {3pt} \frac {d}{d x}u_{i}\left (x \right ) \\ {} & {} & \moverset {4}{\munderset {i =1}{\sum }}\left (\frac {d}{d x}u_{i}\left (x \right )\right ) y_{i}\left (x \right )=0 \\ {} & \circ & \textrm {Calculate the 2nd derivative of}\hspace {3pt} y_{p}\left (x \right ) \\ {} & {} & \frac {d^{2}}{d x^{2}}y_{p}\left (x \right )=\moverset {4}{\munderset {i =1}{\sum }}\left (\left (\frac {d}{d x}u_{i}\left (x \right )\right ) \left (\frac {d}{d x}y_{i}\left (x \right )\right )+u_{i}\left (x \right ) \left (\frac {d^{2}}{d x^{2}}y_{i}\left (x \right )\right )\right ) \\ {} & \circ & \textrm {Choose equation to add to a system of equations in}\hspace {3pt} \frac {d}{d x}u_{i}\left (x \right ) \\ {} & {} & \moverset {4}{\munderset {i =1}{\sum }}\left (\frac {d}{d x}u_{i}\left (x \right )\right ) \left (\frac {d}{d x}y_{i}\left (x \right )\right )=0 \\ {} & \circ & \textrm {Calculate the 3rd derivative of}\hspace {3pt} y_{p}\left (x \right ) \\ {} & {} & \frac {d^{3}}{d x^{3}}y_{p}\left (x \right )=\moverset {4}{\munderset {i =1}{\sum }}\left (\left (\frac {d}{d x}u_{i}\left (x \right )\right ) \left (\frac {d^{2}}{d x^{2}}y_{i}\left (x \right )\right )+u_{i}\left (x \right ) \left (\frac {d^{3}}{d x^{3}}y_{i}\left (x \right )\right )\right ) \\ {} & \circ & \textrm {Choose equation to add to a system of equations in}\hspace {3pt} \frac {d}{d x}u_{i}\left (x \right ) \\ {} & {} & \moverset {4}{\munderset {i =1}{\sum }}\left (\frac {d}{d x}u_{i}\left (x \right )\right ) \left (\frac {d^{2}}{d x^{2}}y_{i}\left (x \right )\right )=0 \\ {} & \circ & \textrm {The ODE is of the following form where the}\hspace {3pt} P_{i}\left (x \right )\hspace {3pt}\textrm {in this situation are the coefficients of the derivatives in the ODE}\hspace {3pt} \\ {} & {} & \frac {d^{4}}{d x^{4}}y \left (x \right )+\left (\moverset {3}{\munderset {i =0}{\sum }}P_{i}\left (x \right ) \left (\frac {d^{i}}{d x^{i}}y \left (x \right )\right )\right )=f \left (x \right ) \\ {} & \circ & \textrm {Substitute}\hspace {3pt} y_{p}\left (x \right )=\moverset {4}{\munderset {i =1}{\sum }}u_{i}\left (x \right ) y_{i}\left (x \right )\hspace {3pt}\textrm {into the ODE}\hspace {3pt} \\ {} & {} & \left (\moverset {3}{\munderset {j =0}{\sum }}P_{j}\left (x \right ) \left (\moverset {4}{\munderset {i =1}{\sum }}u_{i}\left (x \right ) \left (\frac {d^{j}}{d x^{j}}y_{i}\left (x \right )\right )\right )\right )+\moverset {4}{\munderset {i =1}{\sum }}\left (\left (\frac {d}{d x}u_{i}\left (x \right )\right ) \left (\frac {d^{3}}{d x^{3}}y_{i}\left (x \right )\right )+u_{i}\left (x \right ) \left (\frac {d^{4}}{d x^{4}}y_{i}\left (x \right )\right )\right )=f \left (x \right ) \\ {} & \circ & \textrm {Rearrange the ODE}\hspace {3pt} \\ {} & {} & \moverset {4}{\munderset {i =1}{\sum }}\left (u_{i}\left (x \right )\cdot \left (\left (\moverset {3}{\munderset {j =0}{\sum }}P_{j}\left (x \right ) \left (\frac {d^{j}}{d x^{j}}y_{i}\left (x \right )\right )\right )+\frac {d^{4}}{d x^{4}}y_{i}\left (x \right )\right )+\left (\frac {d}{d x}u_{i}\left (x \right )\right ) \left (\frac {d^{3}}{d x^{3}}y_{i}\left (x \right )\right )\right )=f \left (x \right ) \\ {} & \circ & \textrm {Notice that}\hspace {3pt} y_{i}\left (x \right )\hspace {3pt}\textrm {are solutions to the homogeneous equation so the first term in the sum is 0}\hspace {3pt} \\ {} & {} & \moverset {4}{\munderset {i =1}{\sum }}\left (\frac {d}{d x}u_{i}\left (x \right )\right ) \left (\frac {d^{3}}{d x^{3}}y_{i}\left (x \right )\right )=f \left (x \right ) \\ {} & \circ & \textrm {We have now made a system of}\hspace {3pt} 4\hspace {3pt}\textrm {equations in}\hspace {3pt} 4\hspace {3pt}\textrm {unknowns (}\hspace {3pt} \frac {d}{d x}u_{i}\left (x \right )) \\ {} & {} & \left [\moverset {4}{\munderset {i =1}{\sum }}\left (\frac {d}{d x}u_{i}\left (x \right )\right ) y_{i}\left (x \right )=0, \moverset {4}{\munderset {i =1}{\sum }}\left (\frac {d}{d x}u_{i}\left (x \right )\right ) \left (\frac {d}{d x}y_{i}\left (x \right )\right )=0, \moverset {4}{\munderset {i =1}{\sum }}\left (\frac {d}{d x}u_{i}\left (x \right )\right ) \left (\frac {d^{2}}{d x^{2}}y_{i}\left (x \right )\right )=0, \moverset {4}{\munderset {i =1}{\sum }}\left (\frac {d}{d x}u_{i}\left (x \right )\right ) \left (\frac {d^{3}}{d x^{3}}y_{i}\left (x \right )\right )=f \left (x \right )\right ] \\ {} & \circ & \textrm {Convert the system to linear algebra format, notice that the matrix is the wronskian}\hspace {3pt} W \\ {} & {} & \left [\begin {array}{cccc} y_{1}\left (x \right ) & y_{2}\left (x \right ) & y_{3}\left (x \right ) & y_{4}\left (x \right ) \\ \frac {d}{d x}y_{1}\left (x \right ) & \frac {d}{d x}y_{2}\left (x \right ) & \frac {d}{d x}y_{3}\left (x \right ) & \frac {d}{d x}y_{4}\left (x \right ) \\ \frac {d^{2}}{d x^{2}}y_{1}\left (x \right ) & \frac {d^{2}}{d x^{2}}y_{2}\left (x \right ) & \frac {d^{2}}{d x^{2}}y_{3}\left (x \right ) & \frac {d^{2}}{d x^{2}}y_{4}\left (x \right ) \\ \frac {d^{3}}{d x^{3}}y_{1}\left (x \right ) & \frac {d^{3}}{d x^{3}}y_{2}\left (x \right ) & \frac {d^{3}}{d x^{3}}y_{3}\left (x \right ) & \frac {d^{3}}{d x^{3}}y_{4}\left (x \right ) \end {array}\right ]\cdot \left [\begin {array}{c} \frac {d}{d x}u_{1}\left (x \right ) \\ \frac {d}{d x}u_{2}\left (x \right ) \\ \frac {d}{d x}u_{3}\left (x \right ) \\ \frac {d}{d x}u_{4}\left (x \right ) \end {array}\right ]=\left [\begin {array}{c} 0 \\ 0 \\ 0 \\ f \left (x \right ) \end {array}\right ] \\ {} & \circ & \textrm {Solve for the varied parameters}\hspace {3pt} \\ {} & {} & \left [\begin {array}{c} u_{1}\left (x \right ) \\ u_{2}\left (x \right ) \\ u_{3}\left (x \right ) \\ u_{4}\left (x \right ) \end {array}\right ]=\int W^{-1}\cdot \left [\begin {array}{c} 0 \\ 0 \\ 0 \\ f \left (x \right ) \end {array}\right ]d x \\ {} & \circ & \textrm {Substitute in the homogeneous solutions and forcing function and solve}\hspace {3pt} \\ {} & {} & \left [\begin {array}{c} u_{1}\left (x \right ) \\ u_{2}\left (x \right ) \\ u_{3}\left (x \right ) \\ u_{4}\left (x \right ) \end {array}\right ]=\left [\begin {array}{c} -\frac {{\mathrm e}^{2 x}}{2} \\ \frac {\left (x^{2}+2\right ) {\mathrm e}^{2 x}}{2 \,{\mathrm e}^{x}} \\ -\frac {x \,{\mathrm e}^{2 x}}{{\mathrm e}^{x}} \\ \frac {{\mathrm e}^{2 x}}{2 \,{\mathrm e}^{x}} \end {array}\right ] \\ & {} & \textrm {Find a particular solution}\hspace {3pt} y_{p}\left (x \right )\hspace {3pt}\textrm {of the ODE}\hspace {3pt} \\ {} & {} & y_{p}\left (x \right )=\frac {{\mathrm e}^{2 x}}{2} \\ \bullet & {} & \textrm {Substitute particular solution into general solution to ODE}\hspace {3pt} \\ {} & {} & y \left (x \right )=\mathit {C1} +\mathit {C2} \,{\mathrm e}^{x}+\mathit {C3} x \,{\mathrm e}^{x}+\mathit {C4} \,x^{2} {\mathrm e}^{x}+\frac {{\mathrm e}^{2 x}}{2} \end {array} \]
✓ Mathematica. Time used: 0.032 (sec). Leaf size: 41
ode=D[y[x],{x,4}]-3*D[y[x],{x,3}]+3*D[y[x],{x,2}]-D[y[x],x]==Exp[2*x];
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*} y(x)&\to \frac {1}{2} e^x \left (e^x+2 \left (c_3 \left (x^2-2 x+2\right )+c_2 (x-1)+c_1\right )\right )+c_4 \end{align*}
✓ Sympy. Time used: 0.122 (sec). Leaf size: 22
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(-exp(2*x) - Derivative(y(x), x) + 3*Derivative(y(x), (x, 2)) - 3*Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
\[
y{\left (x \right )} = C_{1} + \left (C_{2} + x \left (C_{3} + C_{4} x\right )\right ) e^{x} + \frac {e^{2 x}}{2}
\]