2.3.5 Problem 5
Internal
problem
ID
[19720]
Book
:
Elementary
Differential
Equations.
By
Thornton
C.
Fry.
D
Van
Nostrand.
NY.
First
Edition
(1929)
Section
:
Chapter
IV.
Methods
of
solution:
First
order
equations.
section
29.
Problems
at
page
81
Problem
number
:
5
Date
solved
:
Friday, November 28, 2025 at 06:36:02 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class A`]]
Solved using first_order_ode_isobaric
Time used: 0.868 (sec)
Solve
\begin{align*}
x +y^{\prime } y&=m y \\
\end{align*}
Solving for
\(y'\) gives
\begin{align*}
\tag{1} y' &= \frac {-x +m y}{y} \\
\end{align*}
Each of the above ode’s is now solved An ode
\(y^{\prime }=f(x,y)\) is isobaric if
\[ f(t x, t^m y) = t^{m-1} f(x,y)\tag {1} \]
Where here
\[ f(x,y) = \frac {-x +m y}{y}\tag {2} \]
\(m\)
is the order of isobaric. Substituting (2) into (1) and solving for
\(m\) gives
\[ m = 1 \]
Since the ode is isobaric of
order
\(m=1\), then the substitution
\begin{align*} y&=u x^m \\ &=u x \end{align*}
Converts the ODE to a separable in \(u \left (x \right )\). Performing this substitution gives
\[ u \left (x \right )+x u^{\prime }\left (x \right ) = \frac {-x +m x u \left (x \right )}{x u \left (x \right )} \]
The ode
\begin{equation}
u^{\prime }\left (x \right ) = -\frac {u \left (x \right )^{2}-m u \left (x \right )+1}{u \left (x \right ) x}
\end{equation}
is separable as it
can be written as
\begin{align*} u^{\prime }\left (x \right )&= -\frac {u \left (x \right )^{2}-m u \left (x \right )+1}{u \left (x \right ) x}\\ &= f(x) g(u) \end{align*}
Where
\begin{align*} f(x) &= -\frac {1}{x}\\ g(u) &= \frac {-m u +u^{2}+1}{u} \end{align*}
Integrating gives
\begin{align*}
\int { \frac {1}{g(u)} \,du} &= \int { f(x) \,dx} \\
\int { \frac {u}{-m u +u^{2}+1}\,du} &= \int { -\frac {1}{x} \,dx} \\
\end{align*}
\[
\frac {\ln \left (u \left (x \right )^{2}-m u \left (x \right )+1\right )}{2}+\frac {m \,\operatorname {arctanh}\left (\frac {-2 u \left (x \right )+m}{\sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}}=\ln \left (\frac {1}{x}\right )+c_1
\]
We now need to find the singular solutions, these are found by finding
for what values
\(g(u)\) is zero, since we had to divide by this above. Solving
\(g(u)=0\) or
\[
\frac {-m u +u^{2}+1}{u}=0
\]
for
\(u \left (x \right )\) gives
\begin{align*} u \left (x \right )&=\frac {m}{2}-\frac {\sqrt {m^{2}-4}}{2}\\ u \left (x \right )&=\frac {m}{2}+\frac {\sqrt {m^{2}-4}}{2} \end{align*}
Now we go over each such singular solution and check if it verifies the ode itself and any initial
conditions given. If it does not then the singular solution will not be used.
Therefore the solutions found are
\begin{align*}
\frac {\ln \left (u \left (x \right )^{2}-m u \left (x \right )+1\right )}{2}+\frac {m \,\operatorname {arctanh}\left (\frac {-2 u \left (x \right )+m}{\sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}} &= \ln \left (\frac {1}{x}\right )+c_1 \\
u \left (x \right ) &= \frac {m}{2}-\frac {\sqrt {m^{2}-4}}{2} \\
u \left (x \right ) &= \frac {m}{2}+\frac {\sqrt {m^{2}-4}}{2} \\
\end{align*}
Converting
\(\frac {\ln \left (u \left (x \right )^{2}-m u \left (x \right )+1\right )}{2}+\frac {m \,\operatorname {arctanh}\left (\frac {-2 u \left (x \right )+m}{\sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}} = \ln \left (\frac {1}{x}\right )+c_1\) back to
\(y\) gives
\begin{align*} \frac {\ln \left (\frac {y^{2}}{x^{2}}-\frac {m y}{x}+1\right )}{2}+\frac {m \,\operatorname {arctanh}\left (\frac {-\frac {2 y}{x}+m}{\sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}} = \ln \left (\frac {1}{x}\right )+c_1 \end{align*}
Converting \(u \left (x \right ) = \frac {m}{2}-\frac {\sqrt {m^{2}-4}}{2}\) back to \(y\) gives
\begin{align*} \frac {y}{x} = \frac {m}{2}-\frac {\sqrt {m^{2}-4}}{2} \end{align*}
Converting \(u \left (x \right ) = \frac {m}{2}+\frac {\sqrt {m^{2}-4}}{2}\) back to \(y\) gives
\begin{align*} \frac {y}{x} = \frac {m}{2}+\frac {\sqrt {m^{2}-4}}{2} \end{align*}
Simplifying the above gives
\begin{align*}
\frac {\ln \left (\frac {-m y x +y^{2}+x^{2}}{x^{2}}\right )}{2}+\frac {m \,\operatorname {arctanh}\left (\frac {m x -2 y}{x \sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}} &= \ln \left (\frac {1}{x}\right )+c_1 \\
\frac {y}{x} &= \frac {m}{2}-\frac {\sqrt {m^{2}-4}}{2} \\
\frac {y}{x} &= \frac {m}{2}+\frac {\sqrt {m^{2}-4}}{2} \\
\end{align*}
Solving for
\(y\) gives
\begin{align*}
\frac {\ln \left (\frac {-m y x +y^{2}+x^{2}}{x^{2}}\right )}{2}+\frac {m \,\operatorname {arctanh}\left (\frac {m x -2 y}{x \sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}} &= \ln \left (\frac {1}{x}\right )+c_1 \\
y &= -\frac {\left (-m +\sqrt {m^{2}-4}\right ) x}{2} \\
y &= \frac {\left (m +\sqrt {m^{2}-4}\right ) x}{2} \\
\end{align*}
Summary of solutions found
\begin{align*}
\frac {\ln \left (\frac {-m y x +y^{2}+x^{2}}{x^{2}}\right )}{2}+\frac {m \,\operatorname {arctanh}\left (\frac {m x -2 y}{x \sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}} &= \ln \left (\frac {1}{x}\right )+c_1 \\
y &= -\frac {\left (-m +\sqrt {m^{2}-4}\right ) x}{2} \\
y &= \frac {\left (m +\sqrt {m^{2}-4}\right ) x}{2} \\
\end{align*}
Solved using first_order_ode_homog_A
Time used: 1.290 (sec)
Solve
\begin{align*}
x +y^{\prime } y&=m y \\
\end{align*}
In canonical form, the ODE is
\begin{align*} y' &= F(x,y)\\ &= \frac {m y -x}{y}\tag {1} \end{align*}
An ode of the form \(y' = \frac {M(x,y)}{N(x,y)}\) is called homogeneous if the functions \(M(x,y)\) and \(N(x,y)\) are both homogeneous functions
and of the same order. Recall that a function \(f(x,y)\) is homogeneous of order \(n\) if
\[ f(t^n x, t^n y)= t^n f(x,y) \]
In this case, it can be
seen that both
\(M=m y -x\) and
\(N=y\) are both homogeneous and of the same order
\(n=1\). Therefore this is a
homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the
substitution
\(u=\frac {y}{x}\), or
\(y=ux\). Hence
\[ \frac { \mathop {\mathrm {d}y}}{\mathop {\mathrm {d}x}}= \frac { \mathop {\mathrm {d}u}}{\mathop {\mathrm {d}x}}x + u \]
Applying the transformation
\(y=ux\) to the above ODE in (1) gives
\begin{align*} \frac { \mathop {\mathrm {d}u}}{\mathop {\mathrm {d}x}}x + u &= m -\frac {1}{u}\\ \frac { \mathop {\mathrm {d}u}}{\mathop {\mathrm {d}x}} &= \frac {m -\frac {1}{u \left (x \right )}-u \left (x \right )}{x} \end{align*}
Or
\[ u^{\prime }\left (x \right )-\frac {m -\frac {1}{u \left (x \right )}-u \left (x \right )}{x} = 0 \]
Or
\[ u^{\prime }\left (x \right ) u \left (x \right ) x +u \left (x \right )^{2}-m u \left (x \right )+1 = 0 \]
Which is now solved as separable in
\(u \left (x \right )\).
The ode
\begin{equation}
u^{\prime }\left (x \right ) = -\frac {u \left (x \right )^{2}-m u \left (x \right )+1}{u \left (x \right ) x}
\end{equation}
is separable as it can be written as
\begin{align*} u^{\prime }\left (x \right )&= -\frac {u \left (x \right )^{2}-m u \left (x \right )+1}{u \left (x \right ) x}\\ &= f(x) g(u) \end{align*}
Where
\begin{align*} f(x) &= -\frac {1}{x}\\ g(u) &= \frac {-m u +u^{2}+1}{u} \end{align*}
Integrating gives
\begin{align*}
\int { \frac {1}{g(u)} \,du} &= \int { f(x) \,dx} \\
\int { \frac {u}{-m u +u^{2}+1}\,du} &= \int { -\frac {1}{x} \,dx} \\
\end{align*}
\[
\frac {\ln \left (u \left (x \right )^{2}-m u \left (x \right )+1\right )}{2}+\frac {m \,\operatorname {arctanh}\left (\frac {-2 u \left (x \right )+m}{\sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}}=\ln \left (\frac {1}{x}\right )+c_1
\]
We now need to find the singular solutions, these are found by finding
for what values
\(g(u)\) is zero, since we had to divide by this above. Solving
\(g(u)=0\) or
\[
\frac {-m u +u^{2}+1}{u}=0
\]
for
\(u \left (x \right )\) gives
\begin{align*} u \left (x \right )&=\frac {m}{2}-\frac {\sqrt {m^{2}-4}}{2}\\ u \left (x \right )&=\frac {m}{2}+\frac {\sqrt {m^{2}-4}}{2} \end{align*}
Now we go over each such singular solution and check if it verifies the ode itself and any initial
conditions given. If it does not then the singular solution will not be used.
Therefore the solutions found are
\begin{align*}
\frac {\ln \left (u \left (x \right )^{2}-m u \left (x \right )+1\right )}{2}+\frac {m \,\operatorname {arctanh}\left (\frac {-2 u \left (x \right )+m}{\sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}} &= \ln \left (\frac {1}{x}\right )+c_1 \\
u \left (x \right ) &= \frac {m}{2}-\frac {\sqrt {m^{2}-4}}{2} \\
u \left (x \right ) &= \frac {m}{2}+\frac {\sqrt {m^{2}-4}}{2} \\
\end{align*}
Converting
\(\frac {\ln \left (u \left (x \right )^{2}-m u \left (x \right )+1\right )}{2}+\frac {m \,\operatorname {arctanh}\left (\frac {-2 u \left (x \right )+m}{\sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}} = \ln \left (\frac {1}{x}\right )+c_1\) back to
\(y\) gives
\begin{align*} \frac {\operatorname {arctanh}\left (\frac {m x -2 y}{x \sqrt {\left (m -2\right ) \left (m +2\right )}}\right ) m}{\sqrt {\left (m -2\right ) \left (m +2\right )}}+\frac {\ln \left (\frac {-m y x +y^{2}+x^{2}}{x^{2}}\right )}{2} = \ln \left (\frac {1}{x}\right )+c_1 \end{align*}
Converting \(u \left (x \right ) = \frac {m}{2}-\frac {\sqrt {m^{2}-4}}{2}\) back to \(y\) gives
\begin{align*} y = \left (\frac {m}{2}-\frac {\sqrt {m^{2}-4}}{2}\right ) x \end{align*}
Converting \(u \left (x \right ) = \frac {m}{2}+\frac {\sqrt {m^{2}-4}}{2}\) back to \(y\) gives
\begin{align*} y = \left (\frac {m}{2}+\frac {\sqrt {m^{2}-4}}{2}\right ) x \end{align*}
Simplifying the above gives
\begin{align*}
\frac {\ln \left (\frac {-m y x +y^{2}+x^{2}}{x^{2}}\right )}{2}+\frac {m \,\operatorname {arctanh}\left (\frac {m x -2 y}{x \sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}} &= \ln \left (\frac {1}{x}\right )+c_1 \\
y &= -\frac {\left (-m +\sqrt {m^{2}-4}\right ) x}{2} \\
y &= \frac {\left (m +\sqrt {m^{2}-4}\right ) x}{2} \\
\end{align*}
Summary of solutions found
\begin{align*}
\frac {\ln \left (\frac {-m y x +y^{2}+x^{2}}{x^{2}}\right )}{2}+\frac {m \,\operatorname {arctanh}\left (\frac {m x -2 y}{x \sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}} &= \ln \left (\frac {1}{x}\right )+c_1 \\
y &= -\frac {\left (-m +\sqrt {m^{2}-4}\right ) x}{2} \\
y &= \frac {\left (m +\sqrt {m^{2}-4}\right ) x}{2} \\
\end{align*}
Solved using first_order_ode_homog_type_D2
Time used: 0.467 (sec)
Solve
\begin{align*}
x +y^{\prime } y&=m y \\
\end{align*}
Applying change of variables
\(y = u \left (x \right ) x\), then the ode becomes
\begin{align*} x +\left (u^{\prime }\left (x \right ) x +u \left (x \right )\right ) u \left (x \right ) x = m u \left (x \right ) x \end{align*}
Which is now solved The ode
\begin{equation}
u^{\prime }\left (x \right ) = -\frac {u \left (x \right )^{2}-m u \left (x \right )+1}{u \left (x \right ) x}
\end{equation}
is separable as it can be written as
\begin{align*} u^{\prime }\left (x \right )&= -\frac {u \left (x \right )^{2}-m u \left (x \right )+1}{u \left (x \right ) x}\\ &= f(x) g(u) \end{align*}
Where
\begin{align*} f(x) &= -\frac {1}{x}\\ g(u) &= \frac {-m u +u^{2}+1}{u} \end{align*}
Integrating gives
\begin{align*}
\int { \frac {1}{g(u)} \,du} &= \int { f(x) \,dx} \\
\int { \frac {u}{-m u +u^{2}+1}\,du} &= \int { -\frac {1}{x} \,dx} \\
\end{align*}
\[
\frac {\ln \left (u \left (x \right )^{2}-m u \left (x \right )+1\right )}{2}+\frac {m \,\operatorname {arctanh}\left (\frac {-2 u \left (x \right )+m}{\sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}}=\ln \left (\frac {1}{x}\right )+c_1
\]
We now need to find the singular solutions, these are found by finding
for what values
\(g(u)\) is zero, since we had to divide by this above. Solving
\(g(u)=0\) or
\[
\frac {-m u +u^{2}+1}{u}=0
\]
for
\(u \left (x \right )\) gives
\begin{align*} u \left (x \right )&=\frac {m}{2}-\frac {\sqrt {m^{2}-4}}{2}\\ u \left (x \right )&=\frac {m}{2}+\frac {\sqrt {m^{2}-4}}{2} \end{align*}
Now we go over each such singular solution and check if it verifies the ode itself and any initial
conditions given. If it does not then the singular solution will not be used.
Therefore the solutions found are
\begin{align*}
\frac {\ln \left (u \left (x \right )^{2}-m u \left (x \right )+1\right )}{2}+\frac {m \,\operatorname {arctanh}\left (\frac {-2 u \left (x \right )+m}{\sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}} &= \ln \left (\frac {1}{x}\right )+c_1 \\
u \left (x \right ) &= \frac {m}{2}-\frac {\sqrt {m^{2}-4}}{2} \\
u \left (x \right ) &= \frac {m}{2}+\frac {\sqrt {m^{2}-4}}{2} \\
\end{align*}
Converting
\(\frac {\ln \left (u \left (x \right )^{2}-m u \left (x \right )+1\right )}{2}+\frac {m \,\operatorname {arctanh}\left (\frac {-2 u \left (x \right )+m}{\sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}} = \ln \left (\frac {1}{x}\right )+c_1\) back to
\(y\) gives
\begin{align*} \frac {\ln \left (\frac {y^{2}}{x^{2}}-\frac {m y}{x}+1\right )}{2}+\frac {m \,\operatorname {arctanh}\left (\frac {-\frac {2 y}{x}+m}{\sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}} = \ln \left (\frac {1}{x}\right )+c_1 \end{align*}
Converting \(u \left (x \right ) = \frac {m}{2}-\frac {\sqrt {m^{2}-4}}{2}\) back to \(y\) gives
\begin{align*} y = \left (\frac {m}{2}-\frac {\sqrt {m^{2}-4}}{2}\right ) x \end{align*}
Converting \(u \left (x \right ) = \frac {m}{2}+\frac {\sqrt {m^{2}-4}}{2}\) back to \(y\) gives
\begin{align*} y = \left (\frac {m}{2}+\frac {\sqrt {m^{2}-4}}{2}\right ) x \end{align*}
Simplifying the above gives
\begin{align*}
\frac {\ln \left (\frac {-m y x +y^{2}+x^{2}}{x^{2}}\right )}{2}+\frac {m \,\operatorname {arctanh}\left (\frac {m x -2 y}{x \sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}} &= \ln \left (\frac {1}{x}\right )+c_1 \\
y &= -\frac {\left (-m +\sqrt {m^{2}-4}\right ) x}{2} \\
y &= \frac {\left (m +\sqrt {m^{2}-4}\right ) x}{2} \\
\end{align*}
Summary of solutions found
\begin{align*}
\frac {\ln \left (\frac {-m y x +y^{2}+x^{2}}{x^{2}}\right )}{2}+\frac {m \,\operatorname {arctanh}\left (\frac {m x -2 y}{x \sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}} &= \ln \left (\frac {1}{x}\right )+c_1 \\
y &= -\frac {\left (-m +\sqrt {m^{2}-4}\right ) x}{2} \\
y &= \frac {\left (m +\sqrt {m^{2}-4}\right ) x}{2} \\
\end{align*}
Solved using first_order_ode_homog_type_G
Time used: 0.140 (sec)
Solve
\begin{align*}
x +y^{\prime } y&=m y \\
\end{align*}
Multiplying the right side of the ode, which is
\(\frac {m y -x}{y}\) by
\(\frac {x}{y}\) gives
\begin{align*} y^{\prime } &= \left (\frac {x}{y}\right ) \frac {m y -x}{y}\\ &= \frac {x \left (m y -x \right )}{y^{2}}\\ &= F(x,y) \end{align*}
Since \(F \left (x , y\right )\) has \(y\), then let
\begin{align*} f_x&= x \left (\frac {\partial }{\partial x}F \left (x , y\right )\right )\\ &= \frac {x \left (m y -2 x \right )}{y^{2}}\\ f_y&= y \left (\frac {\partial }{\partial y}F \left (x , y\right )\right )\\ &= -\frac {x \left (m y -2 x \right )}{y^{2}}\\ \alpha &= \frac {f_x}{f_y} \\ &=-1 \end{align*}
Since \(\alpha \) is independent of \(x,y\) then this is Homogeneous type G.
Let
\begin{align*} y&=\frac {z}{x^ \alpha }\\ &=\frac {z}{\frac {1}{x}} \end{align*}
Substituting the above back into \(F(x,y)\) gives
\begin{align*} F \left (z \right ) &=\frac {m z -1}{z^{2}} \end{align*}
We see that \(F \left (z \right )\) does not depend on \(x\) nor on \(y\). If this was not the case, then this method will not
work.
Therefore, the implicit solution is given by
\begin{align*} \ln \left (x \right )- c_1 - \int ^{y x^\alpha } \frac {1}{z \left (\alpha + F(z)\right ) } \,dz & = 0 \end{align*}
Which gives
\[
\ln \left (x \right )-c_1 +\int _{}^{\frac {y}{x}}\frac {1}{z \left (1-\frac {m z -1}{z^{2}}\right )}d z = 0
\]
Summary of solutions found
\begin{align*}
\ln \left (x \right )-c_1 +\int _{}^{\frac {y}{x}}\frac {1}{z \left (1-\frac {m z -1}{z^{2}}\right )}d z &= 0 \\
\end{align*}
Solved using first_order_ode_homog_type_maple_C
Time used: 2.130 (sec)
Solve
\begin{align*}
x +y^{\prime } y&=m y \\
\end{align*}
Let
\(Y = y -y_{0}\) and
\(X = x -x_{0}\) then the above is transformed to new ode in
\(Y(X)\) \[
\frac {d}{d X}Y \left (X \right ) = \frac {-X -x_{0} +m \left (Y \left (X \right )+y_{0} \right )}{Y \left (X \right )+y_{0}}
\]
Solving for possible values of
\(x_{0}\) and
\(y_{0}\)
which makes the above ode a homogeneous ode results in
\begin{align*} x_{0}&=0\\ y_{0}&=0 \end{align*}
Using these values now it is possible to easily solve for \(Y \left (X \right )\). The above ode now becomes
\begin{align*} \frac {d}{d X}Y \left (X \right ) = \frac {m Y \left (X \right )-X}{Y \left (X \right )} \end{align*}
In canonical form, the ODE is
\begin{align*} Y' &= F(X,Y)\\ &= \frac {m Y -X}{Y}\tag {1} \end{align*}
An ode of the form \(Y' = \frac {M(X,Y)}{N(X,Y)}\) is called homogeneous if the functions \(M(X,Y)\) and \(N(X,Y)\) are both homogeneous functions
and of the same order. Recall that a function \(f(X,Y)\) is homogeneous of order \(n\) if
\[ f(t^n X, t^n Y)= t^n f(X,Y) \]
In this case, it can be
seen that both
\(M=m Y -X\) and
\(N=Y\) are both homogeneous and of the same order
\(n=1\). Therefore this is a
homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the
substitution
\(u=\frac {Y}{X}\), or
\(Y=uX\). Hence
\[ \frac { \mathop {\mathrm {d}Y}}{\mathop {\mathrm {d}X}}= \frac { \mathop {\mathrm {d}u}}{\mathop {\mathrm {d}X}}X + u \]
Applying the transformation
\(Y=uX\) to the above ODE in (1) gives
\begin{align*} \frac { \mathop {\mathrm {d}u}}{\mathop {\mathrm {d}X}}X + u &= m -\frac {1}{u}\\ \frac { \mathop {\mathrm {d}u}}{\mathop {\mathrm {d}X}} &= \frac {m -\frac {1}{u \left (X \right )}-u \left (X \right )}{X} \end{align*}
Or
\[ \frac {d}{d X}u \left (X \right )-\frac {m -\frac {1}{u \left (X \right )}-u \left (X \right )}{X} = 0 \]
Or
\[ \left (\frac {d}{d X}u \left (X \right )\right ) u \left (X \right ) X +u \left (X \right )^{2}-m u \left (X \right )+1 = 0 \]
Which is now solved as separable in
\(u \left (X \right )\).
The ode
\begin{equation}
\frac {d}{d X}u \left (X \right ) = -\frac {u \left (X \right )^{2}-m u \left (X \right )+1}{u \left (X \right ) X}
\end{equation}
is separable as it can be written as
\begin{align*} \frac {d}{d X}u \left (X \right )&= -\frac {u \left (X \right )^{2}-m u \left (X \right )+1}{u \left (X \right ) X}\\ &= f(X) g(u) \end{align*}
Where
\begin{align*} f(X) &= -\frac {1}{X}\\ g(u) &= \frac {-m u +u^{2}+1}{u} \end{align*}
Integrating gives
\begin{align*}
\int { \frac {1}{g(u)} \,du} &= \int { f(X) \,dX} \\
\int { \frac {u}{-m u +u^{2}+1}\,du} &= \int { -\frac {1}{X} \,dX} \\
\end{align*}
\[
\frac {\ln \left (u \left (X \right )^{2}-m u \left (X \right )+1\right )}{2}+\frac {m \,\operatorname {arctanh}\left (\frac {-2 u \left (X \right )+m}{\sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}}=\ln \left (\frac {1}{X}\right )+c_1
\]
We now need to find the singular solutions, these are found by finding
for what values
\(g(u)\) is zero, since we had to divide by this above. Solving
\(g(u)=0\) or
\[
\frac {-m u +u^{2}+1}{u}=0
\]
for
\(u \left (X \right )\) gives
\begin{align*} u \left (X \right )&=\frac {m}{2}-\frac {\sqrt {m^{2}-4}}{2}\\ u \left (X \right )&=\frac {m}{2}+\frac {\sqrt {m^{2}-4}}{2} \end{align*}
Now we go over each such singular solution and check if it verifies the ode itself and any initial
conditions given. If it does not then the singular solution will not be used.
Therefore the solutions found are
\begin{align*}
\frac {\ln \left (u \left (X \right )^{2}-m u \left (X \right )+1\right )}{2}+\frac {m \,\operatorname {arctanh}\left (\frac {-2 u \left (X \right )+m}{\sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}} &= \ln \left (\frac {1}{X}\right )+c_1 \\
u \left (X \right ) &= \frac {m}{2}-\frac {\sqrt {m^{2}-4}}{2} \\
u \left (X \right ) &= \frac {m}{2}+\frac {\sqrt {m^{2}-4}}{2} \\
\end{align*}
Converting
\(\frac {\ln \left (u \left (X \right )^{2}-m u \left (X \right )+1\right )}{2}+\frac {m \,\operatorname {arctanh}\left (\frac {-2 u \left (X \right )+m}{\sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}} = \ln \left (\frac {1}{X}\right )+c_1\) back to
\(Y \left (X \right )\) gives
\begin{align*} \frac {m \,\operatorname {arctanh}\left (\frac {X m -2 Y \left (X \right )}{X \sqrt {\left (m -2\right ) \left (m +2\right )}}\right )}{\sqrt {\left (m -2\right ) \left (m +2\right )}}+\frac {\ln \left (\frac {-m Y \left (X \right ) X +Y \left (X \right )^{2}+X^{2}}{X^{2}}\right )}{2} = \ln \left (\frac {1}{X}\right )+c_1 \end{align*}
Converting \(u \left (X \right ) = \frac {m}{2}-\frac {\sqrt {m^{2}-4}}{2}\) back to \(Y \left (X \right )\) gives
\begin{align*} Y \left (X \right ) = X \left (\frac {m}{2}-\frac {\sqrt {m^{2}-4}}{2}\right ) \end{align*}
Converting \(u \left (X \right ) = \frac {m}{2}+\frac {\sqrt {m^{2}-4}}{2}\) back to \(Y \left (X \right )\) gives
\begin{align*} Y \left (X \right ) = X \left (\frac {m}{2}+\frac {\sqrt {m^{2}-4}}{2}\right ) \end{align*}
Using the solution for \(Y(X)\)
\begin{align*} \frac {m \,\operatorname {arctanh}\left (\frac {X m -2 Y \left (X \right )}{X \sqrt {\left (m -2\right ) \left (m +2\right )}}\right )}{\sqrt {\left (m -2\right ) \left (m +2\right )}}+\frac {\ln \left (\frac {-m Y \left (X \right ) X +Y \left (X \right )^{2}+X^{2}}{X^{2}}\right )}{2} = \ln \left (\frac {1}{X}\right )+c_1\tag {A} \end{align*}
And replacing back terms in the above solution using
\begin{align*} Y &= y +y_{0}\\ X &= x_{0} +x \end{align*}
Or
\begin{align*} Y &= y\\ X &= x \end{align*}
Then the solution in \(y\) becomes using EQ (A)
\begin{align*} \frac {\operatorname {arctanh}\left (\frac {m x -2 y}{x \sqrt {\left (m -2\right ) \left (m +2\right )}}\right ) m}{\sqrt {\left (m -2\right ) \left (m +2\right )}}+\frac {\ln \left (\frac {-m y x +y^{2}+x^{2}}{x^{2}}\right )}{2} = \ln \left (\frac {1}{x}\right )+c_1 \end{align*}
Using the solution for \(Y(X)\)
\begin{align*} Y \left (X \right ) = X \left (\frac {m}{2}-\frac {\sqrt {m^{2}-4}}{2}\right )\tag {A} \end{align*}
And replacing back terms in the above solution using
\begin{align*} Y &= y +y_{0}\\ X &= x_{0} +x \end{align*}
Or
\begin{align*} Y &= y\\ X &= x \end{align*}
Then the solution in \(y\) becomes using EQ (A)
\begin{align*} y = \left (\frac {m}{2}-\frac {\sqrt {m^{2}-4}}{2}\right ) x \end{align*}
Using the solution for \(Y(X)\)
\begin{align*} Y \left (X \right ) = X \left (\frac {m}{2}+\frac {\sqrt {m^{2}-4}}{2}\right )\tag {A} \end{align*}
And replacing back terms in the above solution using
\begin{align*} Y &= y +y_{0}\\ X &= x_{0} +x \end{align*}
Or
\begin{align*} Y &= y\\ X &= x \end{align*}
Then the solution in \(y\) becomes using EQ (A)
\begin{align*} y = \left (\frac {m}{2}+\frac {\sqrt {m^{2}-4}}{2}\right ) x \end{align*}
Simplifying the above gives
\begin{align*}
\frac {\ln \left (\frac {-m y x +y^{2}+x^{2}}{x^{2}}\right )}{2}+\frac {m \,\operatorname {arctanh}\left (\frac {m x -2 y}{x \sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}} &= \ln \left (\frac {1}{x}\right )+c_1 \\
y &= -\frac {\left (-m +\sqrt {m^{2}-4}\right ) x}{2} \\
y &= \frac {\left (m +\sqrt {m^{2}-4}\right ) x}{2} \\
\end{align*}
Summary of solutions found
\begin{align*}
\frac {\ln \left (\frac {-m y x +y^{2}+x^{2}}{x^{2}}\right )}{2}+\frac {m \,\operatorname {arctanh}\left (\frac {m x -2 y}{x \sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}} &= \ln \left (\frac {1}{x}\right )+c_1 \\
y &= -\frac {\left (-m +\sqrt {m^{2}-4}\right ) x}{2} \\
y &= \frac {\left (m +\sqrt {m^{2}-4}\right ) x}{2} \\
\end{align*}
Solve
\begin{align*}
x +y^{\prime } y&=m y \\
\end{align*}
Solved using first_order_ode_abel_second_kind_solved_by_converting_to_first_kind
Time used: 2.130 (sec)
This is Abel second kind ODE, it has the form
\[ \left (y+g\right )y^{\prime }= f_0(x)+f_1(x) y +f_2(x)y^{2}+f_3(x)y^{3} \]
Comparing the above to given ODE which is
\begin{align*}x +y^{\prime } y = m y\tag {1} \end{align*}
Shows that
\begin{align*} g &= 0\\ f_0 &= -x\\ f_1 &= m\\ f_2 &= 0\\ f_3 &= 0 \end{align*}
Applying transformation
\begin{align*} y&=\frac {1}{u(x)}-g \end{align*}
Results in the new ode which is Abel first kind
\begin{align*} u^{\prime }\left (x \right ) = x u \left (x \right )^{3}-m u \left (x \right )^{2} \end{align*}
Which is now solved.
To solve an ode of the form
\begin{equation} M\left ( x,y\right ) +N\left ( x,y\right ) \frac {dy}{dx}=0\tag {A}\end{equation}
We assume there exists a function
\(\phi \left ( x,y\right ) =c\) where
\(c\) is constant,
that satisfies the ode. Taking derivative of
\(\phi \) w.r.t.
\(x\) gives
\[ \frac {d}{dx}\phi \left ( x,y\right ) =0 \]
Hence
\begin{equation} \frac {\partial \phi }{\partial x}+\frac {\partial \phi }{\partial y}\frac {dy}{dx}=0\tag {B}\end{equation}
Comparing (A,B) shows
that
\begin{align*} \frac {\partial \phi }{\partial x} & =M\\ \frac {\partial \phi }{\partial y} & =N \end{align*}
But since \(\frac {\partial ^{2}\phi }{\partial x\partial y}=\frac {\partial ^{2}\phi }{\partial y\partial x}\) then for the above to be valid, we require that
\[ \frac {\partial M}{\partial y}=\frac {\partial N}{\partial x}\]
If the above condition is satisfied, then
the original ode is called exact. We still need to determine
\(\phi \left ( x,y\right ) \) but at least we know now that we can
do that since the condition
\(\frac {\partial ^{2}\phi }{\partial x\partial y}=\frac {\partial ^{2}\phi }{\partial y\partial x}\) is satisfied. If this condition is not satisfied then this method will not
work and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness, which
is
\[ M(x,u) \mathop {\mathrm {d}x}+ N(x,u) \mathop {\mathrm {d}u}=0 \tag {1A} \]
Therefore
\begin{align*} \mathop {\mathrm {d}u} &= \left (x \,u^{3}-m \,u^{2}\right )\mathop {\mathrm {d}x}\\ \left (-x \,u^{3}+m \,u^{2}\right ) \mathop {\mathrm {d}x} + \mathop {\mathrm {d}u} &= 0 \tag {2A} \end{align*}
Comparing (1A) and (2A) shows that
\begin{align*} M(x,u) &= -x \,u^{3}+m \,u^{2}\\ N(x,u) &= 1 \end{align*}
The next step is to determine if the ODE is is exact or not. The ODE is exact when the following
condition is satisfied
\[ \frac {\partial M}{\partial u} = \frac {\partial N}{\partial x} \]
Using result found above gives
\begin{align*} \frac {\partial M}{\partial u} &= \frac {\partial }{\partial u} \left (-x \,u^{3}+m \,u^{2}\right )\\ &= -3 x \,u^{2}+2 m u \end{align*}
And
\begin{align*} \frac {\partial N}{\partial x} &= \frac {\partial }{\partial x} \left (1\right )\\ &= 0 \end{align*}
Since \(\frac {\partial M}{\partial u} \neq \frac {\partial N}{\partial x}\), then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating
factor to make it exact. Let
\begin{align*} A &= \frac {1}{N} \left (\frac {\partial M}{\partial u} - \frac {\partial N}{\partial x} \right ) \\ &=1\left ( \left ( -3 x \,u^{2}+2 m u\right ) - \left (0 \right ) \right ) \\ &=-3 x \,u^{2}+2 m u \end{align*}
Since \(A\) depends on \(u\), it can not be used to obtain an integrating factor. We will now try a second
method to find an integrating factor. Let
\begin{align*} B &= \frac {1}{M} \left ( \frac {\partial N}{\partial x} - \frac {\partial M}{\partial u} \right ) \\ &=\frac {1}{u^{2} \left (-u x +m \right )}\left ( \left ( 0\right ) - \left (-3 x \,u^{2}+2 m u \right ) \right ) \\ &=\frac {3 u x -2 m}{u \left (-u x +m \right )} \end{align*}
Since \(B\) depends on \(x\), it can not be used to obtain an integrating factor.We will now try a third
method to find an integrating factor. Let
\[ R = \frac { \frac {\partial N}{\partial x} - \frac {\partial M}{\partial u} } {x M - y N} \]
\(R\) is now checked to see if it is a function of only
\(t=x u\).
Therefore
\begin{align*} R &= \frac { \frac {\partial N}{\partial x} - \frac {\partial M}{\partial u} } {x M - y N} \\ &= \frac {\left (0\right )-\left (-3 x \,u^{2}+2 m u\right )} {x\left (-x \,u^{3}+m \,u^{2}\right ) - u\left (1\right )} \\ &= \frac {3 u x -2 m}{-u^{2} x^{2}+m u x -1} \end{align*}
Replacing all powers of terms \(x u\) by \(t\) gives
\[ R = \frac {-2 m +3 t}{m t -t^{2}-1} \]
Since
\(R\) depends on
\(t\) only, then it can be used to find an
integrating factor. Let the integrating factor be
\(\mu \) then
\begin{align*} \mu &= e^{\int R \mathop {\mathrm {d}t}} \\ &= e^{\int \left (\frac {-2 m +3 t}{m t -t^{2}-1}\right )\mathop {\mathrm {d}t} } \end{align*}
The result of integrating gives
\begin{align*} \mu &= e^{-\frac {3 \ln \left (-m t +t^{2}+1\right )}{2}-\frac {m \,\operatorname {arctanh}\left (\frac {2 t -m}{\sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}} } \\ &= \frac {{\mathrm e}^{\frac {m \,\operatorname {arctanh}\left (\frac {m -2 t}{\sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}}}}{\left (-m t +t^{2}+1\right )^{{3}/{2}}} \end{align*}
Now \(t\) is replaced back with \(x u\) giving
\[ \mu =\frac {{\mathrm e}^{\frac {m \,\operatorname {arctanh}\left (\frac {-2 u x +m}{\sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}}}}{\left (u^{2} x^{2}-m u x +1\right )^{{3}/{2}}} \]
Multiplying
\(M\) and
\(N\) by this integrating factor gives
new
\(M\) and new
\(N\) which are called
\( \overline {M}\) and
\( \overline {N}\) so not to confuse them with the original
\(M\) and
\(N\)
\begin{align*} \overline {M} &=\mu M \\ &= \frac {{\mathrm e}^{\frac {m \,\operatorname {arctanh}\left (\frac {-2 u x +m}{\sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}}}}{\left (u^{2} x^{2}-m u x +1\right )^{{3}/{2}}}\left (-x \,u^{3}+m \,u^{2}\right ) \\ &= \frac {u^{2} \left (-u x +m \right ) {\mathrm e}^{\frac {m \,\operatorname {arctanh}\left (\frac {-2 u x +m}{\sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}}}}{\left (u^{2} x^{2}-m u x +1\right )^{{3}/{2}}} \end{align*}
And
\begin{align*} \overline {N} &=\mu N \\ &= \frac {{\mathrm e}^{\frac {m \,\operatorname {arctanh}\left (\frac {-2 u x +m}{\sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}}}}{\left (u^{2} x^{2}-m u x +1\right )^{{3}/{2}}}\left (1\right ) \\ &= \frac {{\mathrm e}^{\frac {m \,\operatorname {arctanh}\left (\frac {-2 u x +m}{\sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}}}}{\left (u^{2} x^{2}-m u x +1\right )^{{3}/{2}}} \end{align*}
A modified ODE is now obtained from the original ODE, which is exact and can solved. The
modified ODE is
\begin{align*} \overline {M} + \overline {N} \frac { \mathop {\mathrm {d}u}}{\mathop {\mathrm {d}x}} &= 0 \\ \left (\frac {u^{2} \left (-u x +m \right ) {\mathrm e}^{\frac {m \,\operatorname {arctanh}\left (\frac {-2 u x +m}{\sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}}}}{\left (u^{2} x^{2}-m u x +1\right )^{{3}/{2}}}\right ) + \left (\frac {{\mathrm e}^{\frac {m \,\operatorname {arctanh}\left (\frac {-2 u x +m}{\sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}}}}{\left (u^{2} x^{2}-m u x +1\right )^{{3}/{2}}}\right ) \frac { \mathop {\mathrm {d}u}}{\mathop {\mathrm {d}x}} &= 0 \end{align*}
The following equations are now set up to solve for the function \(\phi \left (x,u\right )\)
\begin{align*} \frac {\partial \phi }{\partial x } &= \overline {M}\tag {1} \\ \frac {\partial \phi }{\partial u } &= \overline {N}\tag {2} \end{align*}
Integrating (1) w.r.t. \(x\) gives
\begin{align*}
\int \frac {\partial \phi }{\partial x} \mathop {\mathrm {d}x} &= \int \overline {M}\mathop {\mathrm {d}x} \\
\int \frac {\partial \phi }{\partial x} \mathop {\mathrm {d}x} &= \int \frac {u^{2} \left (-u x +m \right ) {\mathrm e}^{\frac {m \,\operatorname {arctanh}\left (\frac {-2 u x +m}{\sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}}}}{\left (u^{2} x^{2}-m u x +1\right )^{{3}/{2}}}\mathop {\mathrm {d}x} \\
\tag{3} \phi &= \frac {u \,{\mathrm e}^{\frac {m \,\operatorname {arctanh}\left (\frac {-2 u x +m}{\sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}}}}{\sqrt {u^{2} x^{2}-m u x +1}}+ f(u) \\
\end{align*}
Where
\(f(u)\) is used for the constant of integration since
\(\phi \) is a function of
both
\(x\) and
\(u\). Taking derivative of equation (3) w.r.t
\(u\) gives
\begin{align*}
\tag{4} \frac {\partial \phi }{\partial u} &= \frac {{\mathrm e}^{\frac {m \,\operatorname {arctanh}\left (\frac {-2 u x +m}{\sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}}}}{\sqrt {u^{2} x^{2}-m u x +1}}-\frac {u \,{\mathrm e}^{\frac {m \,\operatorname {arctanh}\left (\frac {-2 u x +m}{\sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}}} \left (2 u \,x^{2}-m x \right )}{2 \left (u^{2} x^{2}-m u x +1\right )^{{3}/{2}}}-\frac {2 u m x \,{\mathrm e}^{\frac {m \,\operatorname {arctanh}\left (\frac {-2 u x +m}{\sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}}}}{\sqrt {u^{2} x^{2}-m u x +1}\, \left (m^{2}-4\right ) \left (-\frac {\left (-2 u x +m \right )^{2}}{m^{2}-4}+1\right )}+f'(u) \\
&=\frac {{\mathrm e}^{\frac {m \,\operatorname {arctanh}\left (\frac {-2 u x +m}{\sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}}}}{\left (u^{2} x^{2}-m u x +1\right )^{{3}/{2}}}+f'(u) \\
\end{align*}
But equation (2) says that
\(\frac {\partial \phi }{\partial u} = \frac {{\mathrm e}^{\frac {m \,\operatorname {arctanh}\left (\frac {-2 u x +m}{\sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}}}}{\left (u^{2} x^{2}-m u x +1\right )^{{3}/{2}}}\). Therefore
equation (4) becomes
\begin{equation}
\tag{5} \frac {{\mathrm e}^{\frac {m \,\operatorname {arctanh}\left (\frac {-2 u x +m}{\sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}}}}{\left (u^{2} x^{2}-m u x +1\right )^{{3}/{2}}} = \frac {{\mathrm e}^{\frac {m \,\operatorname {arctanh}\left (\frac {-2 u x +m}{\sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}}}}{\left (u^{2} x^{2}-m u x +1\right )^{{3}/{2}}}+f'(u)
\end{equation}
Solving equation (5) for
\( f'(u)\) gives
\[ f'(u) = 0 \]
Therefore
\[ f(u) = c_1 \]
Where
\(c_1\) is constant of integration.
Substituting this result for
\(f(u)\) into equation (3) gives
\(\phi \) \[
\phi = \frac {u \,{\mathrm e}^{\frac {m \,\operatorname {arctanh}\left (\frac {-2 u x +m}{\sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}}}}{\sqrt {u^{2} x^{2}-m u x +1}}+ c_1
\]
But since
\(\phi \) itself is a constant function, then
let
\(\phi =c_2\) where
\(c_2\) is new constant and combining
\(c_1\) and
\(c_2\) constants into the constant
\(c_1\) gives
the solution as
\[
c_1 = \frac {u \,{\mathrm e}^{\frac {m \,\operatorname {arctanh}\left (\frac {-2 u x +m}{\sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}}}}{\sqrt {u^{2} x^{2}-m u x +1}}
\]
Substituting
\(u \left (x \right )=\frac {1}{y}\) in the above solution gives
\[
\frac {{\mathrm e}^{\frac {m \,\operatorname {arctanh}\left (\frac {-\frac {2 x}{y}+m}{\sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}}}}{y \sqrt {\frac {x^{2}}{y^{2}}-\frac {m x}{y}+1}} = c_1
\]
Simplifying the above gives
\begin{align*}
\frac {{\mathrm e}^{\frac {m \,\operatorname {arctanh}\left (\frac {m y-2 x}{y \sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}}}}{\sqrt {\frac {-m y x +y^{2}+x^{2}}{y^{2}}}\, y} &= c_1 \\
\end{align*}
Summary of solutions found
\begin{align*}
\frac {{\mathrm e}^{\frac {m \,\operatorname {arctanh}\left (\frac {m y-2 x}{y \sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}}}}{\sqrt {\frac {-m y x +y^{2}+x^{2}}{y^{2}}}\, y} &= c_1 \\
\end{align*}
Solved using first_order_ode_LIE
Time used: 50.567 (sec)
Solve
\begin{align*}
x +y^{\prime } y&=m y \\
\end{align*}
Writing the ode as
\begin{align*} y^{\prime }&=\frac {m y -x}{y}\\ y^{\prime }&= \omega \left ( x,y\right ) \end{align*}
The condition of Lie symmetry is the linearized PDE given by
\begin{align*} \eta _{x}+\omega \left ( \eta _{y}-\xi _{x}\right ) -\omega ^{2}\xi _{y}-\omega _{x}\xi -\omega _{y}\eta =0\tag {A} \end{align*}
To determine \(\xi ,\eta \) then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as
anstaz gives
\begin{align*}
\tag{1E} \xi &= x a_{2}+y a_{3}+a_{1} \\
\tag{2E} \eta &= x b_{2}+y b_{3}+b_{1} \\
\end{align*}
Where the unknown coefficients are
\[
\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\}
\]
Substituting equations (1E,2E) and
\(\omega \) into (A)
gives
\begin{equation}
\tag{5E} b_{2}+\frac {\left (m y -x \right ) \left (b_{3}-a_{2}\right )}{y}-\frac {\left (m y -x \right )^{2} a_{3}}{y^{2}}+\frac {x a_{2}+y a_{3}+a_{1}}{y}-\left (\frac {m}{y}-\frac {m y -x}{y^{2}}\right ) \left (x b_{2}+y b_{3}+b_{1}\right ) = 0
\end{equation}
Putting the above in normal form gives
\[
-\frac {m^{2} y^{2} a_{3}-2 m x y a_{3}+m \,y^{2} a_{2}-m \,y^{2} b_{3}+x^{2} a_{3}+x^{2} b_{2}-2 x y a_{2}+2 x y b_{3}-y^{2} a_{3}-b_{2} y^{2}+x b_{1}-y a_{1}}{y^{2}} = 0
\]
Setting the numerator to zero gives
\begin{equation}
\tag{6E} -m^{2} y^{2} a_{3}+2 m x y a_{3}-m \,y^{2} a_{2}+m \,y^{2} b_{3}-x^{2} a_{3}-x^{2} b_{2}+2 x y a_{2}-2 x y b_{3}+y^{2} a_{3}+b_{2} y^{2}-x b_{1}+y a_{1} = 0
\end{equation}
Looking at the
above PDE shows the following are all the terms with
\(\{x, y\}\) in them.
\[
\{x, y\}
\]
The following substitution is
now made to be able to collect on all terms with
\(\{x, y\}\) in them
\[
\{x = v_{1}, y = v_{2}\}
\]
The above PDE (6E) now
becomes
\begin{equation}
\tag{7E} -m^{2} a_{3} v_{2}^{2}-m a_{2} v_{2}^{2}+2 m a_{3} v_{1} v_{2}+m b_{3} v_{2}^{2}+2 a_{2} v_{1} v_{2}-a_{3} v_{1}^{2}+a_{3} v_{2}^{2}-b_{2} v_{1}^{2}+b_{2} v_{2}^{2}-2 b_{3} v_{1} v_{2}+a_{1} v_{2}-b_{1} v_{1} = 0
\end{equation}
Collecting the above on the terms
\(v_i\) introduced, and these are
\[
\{v_{1}, v_{2}\}
\]
Equation (7E) now
becomes
\begin{equation}
\tag{8E} \left (-a_{3}-b_{2}\right ) v_{1}^{2}+\left (2 m a_{3}+2 a_{2}-2 b_{3}\right ) v_{1} v_{2}-b_{1} v_{1}+\left (-m^{2} a_{3}-m a_{2}+m b_{3}+a_{3}+b_{2}\right ) v_{2}^{2}+a_{1} v_{2} = 0
\end{equation}
Setting each coefficients in (8E) to zero gives the following equations to solve
\begin{align*} a_{1}&=0\\ -b_{1}&=0\\ -a_{3}-b_{2}&=0\\ 2 m a_{3}+2 a_{2}-2 b_{3}&=0\\ -m^{2} a_{3}-m a_{2}+m b_{3}+a_{3}+b_{2}&=0 \end{align*}
Solving the above equations for the unknowns gives
\begin{align*} a_{1}&=0\\ a_{2}&=m b_{2}+b_{3}\\ a_{3}&=-b_{2}\\ b_{1}&=0\\ b_{2}&=b_{2}\\ b_{3}&=b_{3} \end{align*}
Substituting the above solution in the anstaz (1E,2E) (using \(1\) as arbitrary value for any unknown
in the RHS) gives
\begin{align*}
\xi &= x \\
\eta &= y \\
\end{align*}
Shifting is now applied to make
\(\xi =0\) in order to simplify the rest of the computation
\begin{align*} \eta &= \eta - \omega \left (x,y\right ) \xi \\ &= y - \left (\frac {m y -x}{y}\right ) \left (x\right ) \\ &= y -\frac {\left (m y -x \right ) x}{y}\\ \xi &= 0 \end{align*}
The next step is to determine the canonical coordinates \(R,S\). The canonical coordinates map \(\left ( x,y\right ) \to \left ( R,S \right )\) where \(\left ( R,S \right )\)
are the canonical coordinates which make the original ode become a quadrature and hence solved
by integration.
The characteristic pde which is used to find the canonical coordinates is
\begin{align*} \frac {d x}{\xi } &= \frac {d y}{\eta } = dS \tag {1} \end{align*}
The above comes from the requirements that \(\left ( \xi \frac {\partial }{\partial x} + \eta \frac {\partial }{\partial y}\right ) S(x,y) = 1\). Starting with the first pair of ode’s in (1) gives an
ode to solve for the independent variable \(R\) in the canonical coordinates, where \(S(R)\). Since \(\xi =0\) then in this
special case
\begin{align*} R = x \end{align*}
\(S\) is found from
\begin{align*} S &= \int { \frac {1}{\eta }} dy\\ &= \int { \frac {1}{y -\frac {\left (m y -x \right ) x}{y}}} dy \end{align*}
Which results in
\begin{align*} S&= \frac {\ln \left (-m x y +x^{2}+y^{2}\right )}{2}-\frac {m x \,\operatorname {arctanh}\left (\frac {-m x +2 y}{\sqrt {m^{2} x^{2}-4 x^{2}}}\right )}{\sqrt {m^{2} x^{2}-4 x^{2}}} \end{align*}
Now that \(R,S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\begin{align*} \frac {dS}{dR} &= \frac { S_{x} + \omega (x,y) S_{y} }{ R_{x} + \omega (x,y) R_{y} }\tag {2} \end{align*}
Where in the above \(R_{x},R_{y},S_{x},S_{y}\) are all partial derivatives and \(\omega (x,y)\) is the right hand side of the original ode given
by
\begin{align*} \omega (x,y) &= \frac {m y -x}{y} \end{align*}
Evaluating all the partial derivatives gives
\begin{align*} R_{x} &= 1\\ R_{y} &= 0\\ S_{x} &= \frac {m y -x}{m x y -x^{2}-y^{2}}\\ S_{y} &= -\frac {y}{m x y -x^{2}-y^{2}} \end{align*}
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\begin{align*} \frac {dS}{dR} &= 0\tag {2A} \end{align*}
We now need to express the RHS as function of \(R\) only. This is done by solving for \(x,y\) in terms of \(R,S\) from
the result obtained earlier and simplifying. This gives
\begin{align*} \frac {dS}{dR} &= 0 \end{align*}
The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an
ode, no matter how complicated it is, to one that can be solved by integration when the ode is in
the canonical coordiates \(R,S\).
Since the ode has the form \(\frac {d}{d R}S \left (R \right )=f(R)\), then we only need to integrate \(f(R)\).
\begin{align*} \int {dS} &= \int {0\, dR} + c_2 \\ S \left (R \right ) &= c_2 \end{align*}
To complete the solution, we just need to transform the above back to \(x,y\) coordinates. This results in
\begin{align*} \frac {\ln \left (-m y x +y^{2}+x^{2}\right )}{2}+\frac {m \,\operatorname {arctanh}\left (\frac {m x -2 y}{x \sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}} = c_2 \end{align*}
Summary of solutions found
\begin{align*}
\frac {\ln \left (-m y x +y^{2}+x^{2}\right )}{2}+\frac {m \,\operatorname {arctanh}\left (\frac {m x -2 y}{x \sqrt {m^{2}-4}}\right )}{\sqrt {m^{2}-4}} &= c_2 \\
\end{align*}
✓ Maple. Time used: 0.060 (sec). Leaf size: 57
ode:=diff(y(x),x)*y(x)+x = m*y(x);
dsolve(ode,y(x), singsol=all);
\[
y = \operatorname {RootOf}\left (\textit {\_Z}^{2}-{\mathrm e}^{\operatorname {RootOf}\left (x^{2} \left (4 \,{\mathrm e}^{\textit {\_Z}} {\cosh \left (\frac {\sqrt {m^{2}-4}\, \left (2 c_1 +\textit {\_Z} +2 \ln \left (x \right )\right )}{2 m}\right )}^{2}+m^{2}-4\right )\right )}+1-\textit {\_Z} m \right ) x
\]
Maple trace
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & x +y \left (x \right ) \left (\frac {d}{d x}y \left (x \right )\right )=m y \left (x \right ) \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d x}y \left (x \right ) \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=\frac {-x +m y \left (x \right )}{y \left (x \right )} \end {array} \]
✓ Mathematica. Time used: 0.054 (sec). Leaf size: 72
ode=x+y[x]*D[y[x],x]==m*y[x];
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\[
\text {Solve}\left [\frac {m \arctan \left (\frac {\frac {2 y(x)}{x}-m}{\sqrt {4-m^2}}\right )}{\sqrt {4-m^2}}+\frac {1}{2} \log \left (-\frac {m y(x)}{x}+\frac {y(x)^2}{x^2}+1\right )=-\log (x)+c_1,y(x)\right ]
\]
✗ Sympy
from sympy import *
x = symbols("x")
m = symbols("m")
y = Function("y")
ode = Eq(-m*y(x) + x + y(x)*Derivative(y(x), x),0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
RecursionError : maximum recursion depth exceeded