2.1.3 Problem 4
Internal
problem
ID
[19704]
Book
:
Elementary
Differential
Equations.
By
Thornton
C.
Fry.
D
Van
Nostrand.
NY.
First
Edition
(1929)
Section
:
Chapter
1.
section
5.
Problems
at
page
19
Problem
number
:
4
Date
solved
:
Friday, November 28, 2025 at 06:27:36 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Solved as second order Bessel ode
Time used: 0.241 (sec)
Solve
\begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{x}+y k^{2}&=0 \\
\end{align*}
Writing the ode as
\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +k^{2} x^{2} y = 0\tag {1} \end{align*}
Bessel ode has the form
\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (-n^{2}+x^{2}\right ) y = 0\tag {2} \end{align*}
The generalized form of Bessel ode is given by Bowman (1958) as the following
\begin{align*} x^{2} y^{\prime \prime }+\left (1-2 \alpha \right ) x y^{\prime }+\left (\beta ^{2} \gamma ^{2} x^{2 \gamma }-n^{2} \gamma ^{2}+\alpha ^{2}\right ) y = 0\tag {3} \end{align*}
With the standard solution
\begin{align*} y&=x^{\alpha } \left (c_1 \operatorname {BesselJ}\left (n , \beta \,x^{\gamma }\right )+c_2 \operatorname {BesselY}\left (n , \beta \,x^{\gamma }\right )\right )\tag {4} \end{align*}
Comparing (3) to (1) and solving for \(\alpha ,\beta ,n,\gamma \) gives
\begin{align*} \alpha &= 0\\ \beta &= k\\ n &= 0\\ \gamma &= 1 \end{align*}
Substituting all the above into (4) gives the solution as
\begin{align*} y = c_1 \operatorname {BesselJ}\left (0, k x \right )+c_2 \operatorname {BesselY}\left (0, k x \right ) \end{align*}
Summary of solutions found
\begin{align*}
y &= c_1 \operatorname {BesselJ}\left (0, k x \right )+c_2 \operatorname {BesselY}\left (0, k x \right ) \\
\end{align*}
✓ Maple. Time used: 0.001 (sec). Leaf size: 19
ode:=diff(diff(y(x),x),x)+1/x*diff(y(x),x)+k^2*y(x) = 0;
dsolve(ode,y(x), singsol=all);
\[
y = c_1 \operatorname {BesselJ}\left (0, k x \right )+c_2 \operatorname {BesselY}\left (0, k x \right )
\]
Maple trace
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
<- Bessel successful
<- special function solution successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right )+\frac {\frac {d}{d x}y \left (x \right )}{x}+k^{2} y \left (x \right )=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right ) \\ \square & {} & \textrm {Check to see if}\hspace {3pt} x_{0}=0\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & \circ & \textrm {Define functions}\hspace {3pt} \\ {} & {} & \left [P_{2}\left (x \right )=\frac {1}{x}, P_{3}\left (x \right )=k^{2}\right ] \\ {} & \circ & x \cdot P_{2}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x \cdot P_{2}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=1 \\ {} & \circ & x^{2}\cdot P_{3}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x^{2}\cdot P_{3}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=0 \\ {} & \circ & x =0\textrm {is a regular singular point}\hspace {3pt} \\ & {} & \textrm {Check to see if}\hspace {3pt} x_{0}=0\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & {} & x_{0}=0 \\ \bullet & {} & \textrm {Multiply by denominators}\hspace {3pt} \\ {} & {} & k^{2} y \left (x \right ) x +\left (\frac {d^{2}}{d x^{2}}y \left (x \right )\right ) x +\frac {d}{d x}y \left (x \right )=0 \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \left (x \right ) \\ {} & {} & y \left (x \right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r} \\ \square & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x \cdot y \left (x \right )\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & x \cdot y \left (x \right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r +1} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k -1 \\ {} & {} & x \cdot y \left (x \right )=\moverset {\infty }{\munderset {k =1}{\sum }}a_{k -1} x^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} \frac {d}{d x}y \left (x \right )\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) x^{k +r -1} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1 \\ {} & {} & \frac {d}{d x}y \left (x \right )=\moverset {\infty }{\munderset {k =-1}{\sum }}a_{k +1} \left (k +r +1\right ) x^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x \cdot \left (\frac {d^{2}}{d x^{2}}y \left (x \right )\right )\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & x \cdot \left (\frac {d^{2}}{d x^{2}}y \left (x \right )\right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) \left (k +r -1\right ) x^{k +r -1} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1 \\ {} & {} & x \cdot \left (\frac {d^{2}}{d x^{2}}y \left (x \right )\right )=\moverset {\infty }{\munderset {k =-1}{\sum }}a_{k +1} \left (k +r +1\right ) \left (k +r \right ) x^{k +r} \\ & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & {} & a_{0} r^{2} x^{-1+r}+a_{1} \left (1+r \right )^{2} x^{r}+\left (\moverset {\infty }{\munderset {k =1}{\sum }}\left (a_{k +1} \left (k +r +1\right )^{2}+k^{2} a_{k -1}\right ) x^{k +r}\right )=0 \\ \bullet & {} & a_{0}\textrm {cannot be 0 by assumption, giving the indicial equation}\hspace {3pt} \\ {} & {} & r^{2}=0 \\ \bullet & {} & \textrm {Values of r that satisfy the indicial equation}\hspace {3pt} \\ {} & {} & r =0 \\ \bullet & {} & \textrm {Each term must be 0}\hspace {3pt} \\ {} & {} & a_{1} \left (1+r \right )^{2}=0 \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & a_{k +1} \left (k +1\right )^{2}+k^{2} a_{k -1}=0 \\ \bullet & {} & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1 \\ {} & {} & a_{k +2} \left (k +2\right )^{2}+k^{2} a_{k}=0 \\ \bullet & {} & \textrm {Recursion relation that defines series solution to ODE}\hspace {3pt} \\ {} & {} & a_{k +2}=-\frac {k^{2} a_{k}}{\left (k +2\right )^{2}} \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =0 \\ {} & {} & a_{k +2}=-\frac {k^{2} a_{k}}{\left (k +2\right )^{2}} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =0 \\ {} & {} & \left [y \left (x \right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k}, a_{k +2}=-\frac {k^{2} a_{k}}{\left (k +2\right )^{2}}, a_{1}=0\right ] \end {array} \]
✓ Mathematica. Time used: 0.013 (sec). Leaf size: 22
ode=D[y[x],{x,2}]+1/x*D[y[x],x]+k^2*y[x]==0;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*} y(x)&\to c_1 \operatorname {BesselJ}(0,k x)+c_2 \operatorname {BesselY}(0,k x) \end{align*}
✓ Sympy. Time used: 0.118 (sec). Leaf size: 15
from sympy import *
x = symbols("x")
k = symbols("k")
y = Function("y")
ode = Eq(k**2*y(x) + Derivative(y(x), (x, 2)) + Derivative(y(x), x)/x,0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
\[
y{\left (x \right )} = C_{1} J_{0}\left (k x\right ) + C_{2} Y_{0}\left (k x\right )
\]