2.2.201 Problems 20001 to 20100

Table 2.415: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

20001

\begin{align*} \left (y^{2}+x^{2}\right ) \left (1+y^{\prime }\right )^{2}-2 \left (x +y\right ) \left (1+y^{\prime }\right ) \left (y^{\prime } y+x \right )+\left (y^{\prime } y+x \right )^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

52.485

20002

\begin{align*} \left (y^{\prime } y+n x \right )^{2}&=\left (y^{2}+n \,x^{2}\right ) \left (1+{y^{\prime }}^{2}\right ) \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.756

20003

\begin{align*} y^{2} \left (1-{y^{\prime }}^{2}\right )&=b \\ \end{align*}

[_quadrature]

0.374

20004

\begin{align*} \left (-y+y^{\prime } x \right ) \left (y^{\prime } y+x \right )&=h^{2} y^{\prime } \\ \end{align*}

[_rational]

123.985

20005

\begin{align*} {y^{\prime }}^{2}+2 y y^{\prime } \cot \left (x \right )&=y^{2} \\ \end{align*}

[_separable]

0.757

20006

\begin{align*} \left ({y^{\prime }}^{2}-\frac {1}{a^{2}-x^{2}}\right ) \left (y^{\prime }-\sqrt {\frac {y}{x}}\right )&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

0.697

20007

\begin{align*} x +\frac {y^{\prime }}{\sqrt {1+{y^{\prime }}^{2}}}&=a \\ \end{align*}

[_quadrature]

0.249

20008

\begin{align*} x y {y^{\prime }}^{2}+\left (3 x^{2}-2 y^{2}\right ) y^{\prime }-6 y x&=0 \\ \end{align*}

[_separable]

0.219

20009

\begin{align*} {y^{\prime }}^{3}-4 x y^{\prime } y+8 y^{2}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

0.376

20010

\begin{align*} {y^{\prime }}^{3}-\left (x^{2}+y x +y^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+y^{2} x^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3}&=0 \\ \end{align*}

[_quadrature]

0.191

20011

\begin{align*} {y^{\prime }}^{3}+m {y^{\prime }}^{2}&=a \left (y+m x \right ) \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

28.906

20012

\begin{align*} {\mathrm e}^{3 x} \left (y^{\prime }-1\right )+{\mathrm e}^{2 y} {y^{\prime }}^{3}&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _dAlembert]

94.399

20013

\begin{align*} \left (1-y^{2}+\frac {y^{4}}{x^{2}}\right ) {y^{\prime }}^{2}-\frac {2 y y^{\prime }}{x}+\frac {y^{2}}{x^{2}}&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

215.714

20014

\begin{align*} y-\frac {1}{\sqrt {1+{y^{\prime }}^{2}}}&=b \\ \end{align*}

[_quadrature]

0.783

20015

\begin{align*} y&=y^{\prime } x +\frac {m}{y^{\prime }} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.420

20016

\begin{align*} y&=2 y^{\prime } x +y^{2} {y^{\prime }}^{3} \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

0.356

20017

\begin{align*} y&=y^{\prime } x +a \sqrt {1+{y^{\prime }}^{2}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.660

20018

\begin{align*} {y^{\prime }}^{2}+y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.163

20019

\begin{align*} \sqrt {x}\, y^{\prime }&=\sqrt {y} \\ \end{align*}

[_separable]

3.949

20020

\begin{align*} x^{2} {y^{\prime }}^{2}-3 x y^{\prime } y+x^{3}+2 y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

0.377

20021

\begin{align*} \left (1+y^{\prime }\right )^{3}&=\frac {7 \left (x +y\right ) \left (1-y^{\prime }\right )^{3}}{4 a} \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

25.339

20022

\begin{align*} y^{2} \left (1+{y^{\prime }}^{2}\right )&=r^{2} \\ \end{align*}

[_quadrature]

0.399

20023

\begin{align*} x {y^{\prime }}^{2}-\left (x -a \right )^{2}&=0 \\ \end{align*}

[_quadrature]

0.801

20024

\begin{align*} {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.324

20025

\begin{align*} a {y^{\prime }}^{3}&=27 y \\ \end{align*}

[_quadrature]

0.707

20026

\begin{align*} x {y^{\prime }}^{2}-2 y^{\prime } y+a x&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.517

20027

\begin{align*} x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+a^{3}&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘]]

0.464

20028

\begin{align*} y^{2}-2 x y^{\prime } y+{y^{\prime }}^{2} \left (x^{2}-1\right )&=m^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.242

20029

\begin{align*} y&=y^{\prime } x +\sqrt {b^{2}+a^{2} y^{\prime }} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

1.293

20030

\begin{align*} y&=y^{\prime } x -{y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.167

20031

\begin{align*} 4 {y^{\prime }}^{2}&=9 x \\ \end{align*}

[_quadrature]

0.318

20032

\begin{align*} 4 x \left (x -1\right ) \left (x -2\right ) {y^{\prime }}^{2}-\left (3 x^{2}-6 x +2\right )^{2}&=0 \\ \end{align*}

[_quadrature]

0.680

20033

\begin{align*} \left (8 {y^{\prime }}^{3}-27\right ) x&=12 y {y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.615

20034

\begin{align*} \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}-2 x y^{\prime } y+y^{2}-b^{2}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.400

20035

\begin{align*} \left (-y+y^{\prime } x \right ) \left (x -y^{\prime } y\right )&=2 y^{\prime } \\ \end{align*}

[_rational]

34.830

20036

\begin{align*} y^{\prime \prime }+3 y^{\prime }-54 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.184

20037

\begin{align*} y^{\prime \prime }-m^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.098

20038

\begin{align*} 2 y^{\prime \prime }+5 y^{\prime }-12 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.176

20039

\begin{align*} 9 y^{\prime \prime }+18 y^{\prime }-16 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.171

20040

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.042

20041

\begin{align*} y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-9 y^{\prime \prime }-11 y^{\prime }-4 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.047

20042

\begin{align*} y^{\prime \prime }+8 y^{\prime }+25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.234

20043

\begin{align*} y^{\prime \prime \prime \prime }-m^{2} y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.050

20044

\begin{align*} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+8 y^{\prime \prime }-8 y^{\prime }+4 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.059

20045

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{4 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.274

20046

\begin{align*} y^{\prime \prime }-y&=2+5 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.260

20047

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.362

20048

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }-8 y^{\prime }+12 y&=X \left (x \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.294

20049

\begin{align*} y^{\prime \prime \prime }+y&=3+{\mathrm e}^{-x}+5 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.135

20050

\begin{align*} y^{\prime \prime \prime }-y&=\left ({\mathrm e}^{x}+1\right )^{2} \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.127

20051

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=3 \,{\mathrm e}^{\frac {5 x}{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.368

20052

\begin{align*} y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }&=x^{2} \\ \end{align*}

[[_3rd_order, _missing_y]]

0.094

20053

\begin{align*} y^{\prime \prime \prime }+8 y&=x^{4}+2 x +1 \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.103

20054

\begin{align*} y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y&=\cos \left (2 x \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.118

20055

\begin{align*} y^{\prime \prime }+a^{2} y&=\cos \left (a x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.845

20056

\begin{align*} y^{\prime \prime }-4 y&=2 \sin \left (\frac {x}{2}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.370

20057

\begin{align*} y^{\prime \prime \prime }+y&=\sin \left (3 x \right )-\cos \left (\frac {x}{2}\right )^{2} \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.231

20058

\begin{align*} y^{\prime \prime \prime \prime }+y&=x \,{\mathrm e}^{2 x} \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.117

20059

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{2 x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.337

20060

\begin{align*} y^{\prime \prime }+2 y&=x^{2} {\mathrm e}^{3 x}+{\mathrm e}^{x} \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.981

20061

\begin{align*} 4 y+y^{\prime \prime }&=x \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.431

20062

\begin{align*} y^{\prime \prime }-y&=x^{2} \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.457

20063

\begin{align*} y^{\prime \prime \prime \prime }+4 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.046

20064

\begin{align*} y^{\left (5\right )}-13 y^{\prime \prime \prime }+26 y^{\prime \prime }+82 y^{\prime }+104 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.060

20065

\begin{align*} y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime }&={\mathrm e}^{2 x}+x^{2}+x \\ \end{align*}

[[_3rd_order, _missing_y]]

0.118

20066

\begin{align*} 4 y+y^{\prime \prime }&=\sin \left (3 x \right )+{\mathrm e}^{x}+x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.609

20067

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=x +{\mathrm e}^{m x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.309

20068

\begin{align*} y^{\prime \prime }-a^{2} y&={\mathrm e}^{a x}+{\mathrm e}^{n x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.596

20069

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime \prime }-6 y^{\prime }+8 y&=x \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.093

20070

\begin{align*} y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+y^{\prime \prime }&=x^{2} \left (b x +a \right ) \\ \end{align*}

[[_high_order, _missing_y]]

0.139

20071

\begin{align*} y^{\prime \prime \prime }-13 y^{\prime }+12 y&=x \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.084

20072

\begin{align*} y^{\prime \prime \prime \prime }+2 n^{2} y^{\prime \prime }+n^{4} y&=\cos \left (m x \right ) \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.137

20073

\begin{align*} y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime }&=x^{2} \cos \left (x \right ) \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.729

20074

\begin{align*} y^{\prime \prime }+a^{2} y&=\sec \left (a x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.840

20075

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x^{2} {\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.380

20076

\begin{align*} y^{\prime \prime }+n^{2} y&={\mathrm e}^{x} x^{4} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.483

20077

\begin{align*} y^{\prime \prime \prime \prime }-a^{4} y&=x^{4} \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.115

20078

\begin{align*} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime }&=x \\ \end{align*}

[[_high_order, _missing_y]]

0.099

20079

\begin{align*} y^{\prime \prime \prime \prime }-y&={\mathrm e}^{x} \cos \left (x \right ) \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.106

20080

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=\sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.443

20081

\begin{align*} y^{\prime \prime \prime }-7 y^{\prime }-6 y&={\mathrm e}^{2 x} \left (x +1\right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.109

20082

\begin{align*} y^{\prime \prime }-2 y^{\prime }+4 y&={\mathrm e}^{x} \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.404

20083

\begin{align*} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y&={\mathrm e}^{-x} \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.107

20084

\begin{align*} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }+4 y&={\mathrm e}^{x} x^{2} \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.131

20085

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y&=x \,{\mathrm e}^{x}+{\mathrm e}^{x} \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.127

20086

\begin{align*} y^{\prime \prime }-y&=x \sin \left (x \right )+\left (x^{2}+1\right ) {\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.690

20087

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&={\mathrm e}^{x} \cos \left (2 x \right )+\cos \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.854

20088

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y&={\mathrm e}^{x}+\cos \left (x \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.145

20089

\begin{align*} 20 y-9 y^{\prime }+y^{\prime \prime }&=20 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.275

20090

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y&={\mathrm e}^{3 x} \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.091

20091

\begin{align*} y^{\prime \prime \prime }+y&={\mathrm e}^{2 x} \sin \left (x \right )+{\mathrm e}^{\frac {x}{2}} \sin \left (\frac {\sqrt {3}\, x}{2}\right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

1.166

20092

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=2 \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.339

20093

\begin{align*} x^{2} y^{\prime \prime }+y&=3 x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.759

20094

\begin{align*} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}

[[_3rd_order, _exact, _linear, _homogeneous]]

0.116

20095

\begin{align*} y+3 y^{\prime } x +9 x^{2} y^{\prime \prime }+6 x^{3} y^{\prime \prime \prime }+x^{4} y^{\prime \prime \prime \prime }&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.127

20096

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y&=x^{4} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.124

20097

\begin{align*} x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y&=x^{4} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.008

20098

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -20 y&=\left (x +1\right )^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.820

20099

\begin{align*} x^{2} y^{\prime \prime }+7 y^{\prime } x +5 y&=x^{5} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.344

20100

\begin{align*} \left (5+2 x \right )^{2} y^{\prime \prime }-6 \left (5-2 x \right ) y^{\prime }+8 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

36.507