| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{\prime \prime } x +\left (x +1\right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.497 |
|
| \begin{align*}
x \left (x -1\right ) y^{\prime \prime }+3 y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.450 |
|
| \begin{align*}
x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (x +4\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.565 |
|
| \begin{align*}
2 x^{2} \left (2+x \right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.552 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }+y^{\prime } x +\left (x -5\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.750 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }+2 y^{\prime } x -y x&=\sin \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.699 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }+2 y^{\prime } x -y x&=x \sin \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.648 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }+2 y^{\prime } x -y x&=\cos \left (x \right ) \sin \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.696 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }+2 y^{\prime } x -y x&=x^{3}+x \sin \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.697 |
|
| \begin{align*}
\cos \left (x \right ) y^{\prime \prime }+2 y^{\prime } x -y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.689 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.505 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.474 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.512 |
|
| \begin{align*}
\left (x^{2}-x \right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.469 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+\left (x^{2}+6 x \right ) y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.599 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}-8\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.360 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-9 y^{\prime } x +25 y&=0 \\
\end{align*} Series expansion around \(x=0\). | [[_Emden, _Fowler]] | ✓ | ✓ | ✓ | ✓ | 0.361 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x -\left (x^{2}+\frac {5}{4}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.517 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.515 |
|
| \begin{align*}
y^{\prime \prime } x +\left (-x +2\right ) y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.599 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.408 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✗ |
0.333 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x +4 x^{4} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.463 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.023 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime }+y&=x \,{\mathrm e}^{x} \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.477 |
|
| \begin{align*}
y^{\prime }&=y \left (1-y^{2}\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.042 |
|
| \begin{align*}
\frac {x y^{\prime \prime }}{1-x}+y&=\frac {1}{1-x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
✓ |
✓ |
✗ |
1.188 |
|
| \begin{align*}
\frac {x y^{\prime \prime }}{1-x}+y x&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.563 |
|
| \begin{align*}
\frac {x y^{\prime \prime }}{1-x}+y&=\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
✓ |
✓ |
✗ |
1.155 |
|
| \begin{align*}
\frac {x y^{\prime \prime }}{-x^{2}+1}+y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✗ |
✗ |
✗ |
0.375 |
|
| \begin{align*}
y^{\prime \prime }&=\left (x^{2}+3\right ) y \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.257 |
|
| \begin{align*}
y^{\prime \prime }+\left (x -1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.296 |
|
| \begin{align*}
x^{\prime }&=x+2 y+2 t +1 \\
y^{\prime }&=5 x+y+3 t -1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.136 |
|
| \begin{align*}
y^{\prime \prime }+20 y^{\prime }+500 y&=100000 \cos \left (100 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.419 |
|
| \begin{align*}
y^{\prime \prime } \sin \left (2 x \right )^{2}+y^{\prime } \sin \left (4 x \right )-4 y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✗ |
6.463 |
|
| \begin{align*}
y^{\prime \prime }&=A y^{{2}/{3}} \\
\end{align*} | [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] | ✓ | ✓ | ✓ | ✓ | 1.283 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}+1\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.289 |
|
| \begin{align*}
y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.412 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.407 |
|
| \begin{align*}
4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y&=4 \sqrt {x}\, {\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.585 |
|
| \begin{align*}
y^{\prime \prime } x -\left (2 x +2\right ) y^{\prime }+\left (2+x \right ) y&=6 \,{\mathrm e}^{x} x^{3} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.325 |
|
| \begin{align*}
y^{\prime }+y&=\frac {1}{x} \\
\end{align*} Series expansion around \(x=0\). |
[[_linear, ‘class A‘]] |
✗ |
✗ |
✓ |
✗ |
0.204 |
|
| \begin{align*}
y^{\prime }+y&=\frac {1}{x^{2}} \\
\end{align*} Series expansion around \(x=0\). |
[[_linear, ‘class A‘]] |
✗ |
✗ |
✓ |
✗ |
0.233 |
|
| \begin{align*}
y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_separable] |
✓ |
✓ |
✓ |
✗ |
0.125 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{x} \\
\end{align*} Series expansion around \(x=0\). |
[_quadrature] |
✗ |
✗ |
✓ |
✗ |
0.110 |
|
| \begin{align*}
y^{\prime \prime }&=\frac {1}{x} \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _quadrature]] |
✗ |
✗ |
✓ |
✗ |
0.403 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=\frac {1}{x} \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _missing_y]] |
✗ |
✗ |
✓ |
✗ |
0.573 |
|
| \begin{align*}
y^{\prime \prime }+y&=\frac {1}{x} \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
✗ |
✓ |
✗ |
0.480 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=\frac {1}{x} \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
✗ |
✓ |
✗ |
0.536 |
|
| \begin{align*}
h^{2}+\frac {2 a h}{\sqrt {1+{h^{\prime }}^{2}}}&=b^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
1.494 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-24 y&=16-\left (2+x \right ) {\mathrm e}^{4 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.477 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }-4 y&=6 \,{\mathrm e}^{2 t -2} \\
y \left (1\right ) &= 4 \\
y^{\prime }\left (1\right ) &= 5 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.240 |
|
| \begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{a \cos \left (x \right )} \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.880 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{2 y \ln \left (y\right )+y-x} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
3.478 |
|
| \begin{align*}
y^{\prime \prime } x -\left (2 x +1\right ) y^{\prime }+\left (x +1\right ) y&=0 \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✗ | 0.243 |
|
| \begin{align*}
x^{2} y^{\prime }+{\mathrm e}^{-y}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.258 |
|
| \begin{align*}
y^{\prime \prime }+{\mathrm e}^{y}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✓ |
4.974 |
|
| \begin{align*}
y^{\prime }&=\frac {y x +3 x -2 y+6}{y x -3 x -2 y+6} \\
\end{align*} |
[_rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✗ |
✗ |
✗ |
✗ |
14.168 |
|
| \begin{align*}
y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.209 |
|
| \begin{align*}
y^{\prime }&=a \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| \begin{align*}
y^{\prime }&=x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.296 |
|
| \begin{align*}
y^{\prime }&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| \begin{align*}
y^{\prime }&=a x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.273 |
|
| \begin{align*}
y^{\prime }&=a x y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.635 |
|
| \begin{align*}
y^{\prime }&=a x +y \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.655 |
|
| \begin{align*}
y^{\prime }&=a x +b y \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.852 |
|
| \begin{align*}
y^{\prime }&=y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.407 |
|
| \begin{align*}
y^{\prime }&=b y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.506 |
|
| \begin{align*}
y^{\prime }&=a x +b y^{2} \\
\end{align*} |
[[_Riccati, _special]] |
✓ |
✓ |
✓ |
✗ |
38.549 |
|
| \begin{align*}
c y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.224 |
|
| \begin{align*}
c y^{\prime }&=a \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.462 |
|
| \begin{align*}
c y^{\prime }&=a x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.296 |
|
| \begin{align*}
c y^{\prime }&=a x +y \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.859 |
|
| \begin{align*}
c y^{\prime }&=a x +b y \\
\end{align*} | [[_linear, ‘class A‘]] | ✓ | ✓ | ✓ | ✓ | 0.917 |
|
| \begin{align*}
c y^{\prime }&=y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.589 |
|
| \begin{align*}
c y^{\prime }&=b y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.625 |
|
| \begin{align*}
c y^{\prime }&=a x +b y^{2} \\
\end{align*} |
[[_Riccati, _special]] |
✓ |
✓ |
✓ |
✗ |
35.672 |
|
| \begin{align*}
c y^{\prime }&=\frac {a x +b y^{2}}{r} \\
\end{align*} |
[[_Riccati, _special]] |
✓ |
✓ |
✓ |
✗ |
3.052 |
|
| \begin{align*}
c y^{\prime }&=\frac {a x +b y^{2}}{r x} \\
\end{align*} |
[_rational, _Riccati] |
✓ |
✓ |
✓ |
✗ |
6.035 |
|
| \begin{align*}
c y^{\prime }&=\frac {a x +b y^{2}}{r \,x^{2}} \\
\end{align*} |
[_rational, _Riccati] |
✓ |
✓ |
✓ |
✗ |
6.700 |
|
| \begin{align*}
c y^{\prime }&=\frac {a x +b y^{2}}{y} \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.098 |
|
| \begin{align*}
a \sin \left (x \right ) y x y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.095 |
|
| \begin{align*}
f \left (x \right ) \sin \left (x \right ) y x y^{\prime } \pi &=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.095 |
|
| \begin{align*}
y^{\prime }&=y+\sin \left (x \right ) \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.506 |
|
| \begin{align*}
y^{\prime }&=\sin \left (x \right )+y^{2} \\
\end{align*} |
[_Riccati] |
✓ |
✓ |
✓ |
✗ |
5.155 |
|
| \begin{align*}
y^{\prime }&=\cos \left (x \right )+\frac {y}{x} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.780 |
|
| \begin{align*}
y^{\prime }&=\cos \left (x \right )+\frac {y^{2}}{x} \\
\end{align*} |
[_Riccati] |
✗ |
✗ |
✗ |
✗ |
6.197 |
|
| \begin{align*}
y^{\prime }&=x +y+b y^{2} \\
\end{align*} |
[_Riccati] |
✓ |
✓ |
✓ |
✗ |
80.244 |
|
| \begin{align*}
y^{\prime } x&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.235 |
|
| \begin{align*}
5 y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.236 |
|
| \begin{align*}
{\mathrm e} y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.246 |
|
| \begin{align*}
\pi y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.238 |
|
| \begin{align*}
\sin \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.262 |
|
| \begin{align*}
f \left (x \right ) y^{\prime }&=0 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.264 |
|
| \begin{align*}
y^{\prime } x&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.302 |
|
| \begin{align*}
y^{\prime } x&=\sin \left (x \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.253 |
|
| \begin{align*}
\left (x -1\right ) y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.237 |
|
| \begin{align*}
y^{\prime } y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.085 |
|
| \begin{align*}
x y^{\prime } y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.092 |
|
| \begin{align*}
x y \sin \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.094 |
|