2.2.103 Problems 10201 to 10300

Table 2.219: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

10201

\begin{align*} y^{\prime \prime } x +\left (x +1\right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.497

10202

\begin{align*} x \left (x -1\right ) y^{\prime \prime }+3 y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

1.450

10203

\begin{align*} x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (x +4\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.565

10204

\begin{align*} 2 x^{2} \left (2+x \right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.552

10205

\begin{align*} 2 x^{2} y^{\prime \prime }+y^{\prime } x +\left (x -5\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.750

10206

\begin{align*} 2 x^{2} y^{\prime \prime }+2 y^{\prime } x -y x&=\sin \left (x \right ) \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.699

10207

\begin{align*} 2 x^{2} y^{\prime \prime }+2 y^{\prime } x -y x&=x \sin \left (x \right ) \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.648

10208

\begin{align*} 2 x^{2} y^{\prime \prime }+2 y^{\prime } x -y x&=\cos \left (x \right ) \sin \left (x \right ) \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.696

10209

\begin{align*} 2 x^{2} y^{\prime \prime }+2 y^{\prime } x -y x&=x^{3}+x \sin \left (x \right ) \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.697

10210

\begin{align*} \cos \left (x \right ) y^{\prime \prime }+2 y^{\prime } x -y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

1.689

10211

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.505

10212

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.474

10213

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.512

10214

\begin{align*} \left (x^{2}-x \right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

1.469

10215

\begin{align*} x^{2} y^{\prime \prime }+\left (x^{2}+6 x \right ) y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.599

10216

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}-8\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

1.360

10217

\begin{align*} x^{2} y^{\prime \prime }-9 y^{\prime } x +25 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.361

10218

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x -\left (x^{2}+\frac {5}{4}\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.517

10219

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.515

10220

\begin{align*} y^{\prime \prime } x +\left (-x +2\right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.599

10221

\begin{align*} 2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.408

10222

\begin{align*} 2 x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.333

10223

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +4 x^{4} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.463

10224

\begin{align*} x^{2} y^{\prime \prime }-y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

1.023

10225

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime }+y&=x \,{\mathrm e}^{x} \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.477

10226

\begin{align*} y^{\prime }&=y \left (1-y^{2}\right ) \\ \end{align*}

[_quadrature]

1.042

10227

\begin{align*} \frac {x y^{\prime \prime }}{1-x}+y&=\frac {1}{1-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.188

10228

\begin{align*} \frac {x y^{\prime \prime }}{1-x}+y x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.563

10229

\begin{align*} \frac {x y^{\prime \prime }}{1-x}+y&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.155

10230

\begin{align*} \frac {x y^{\prime \prime }}{-x^{2}+1}+y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.375

10231

\begin{align*} y^{\prime \prime }&=\left (x^{2}+3\right ) y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.257

10232

\begin{align*} y^{\prime \prime }+\left (x -1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.296

10233

\begin{align*} x^{\prime }&=x+2 y+2 t +1 \\ y^{\prime }&=5 x+y+3 t -1 \\ \end{align*}

system_of_ODEs

1.136

10234

\begin{align*} y^{\prime \prime }+20 y^{\prime }+500 y&=100000 \cos \left (100 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.419

10235

\begin{align*} y^{\prime \prime } \sin \left (2 x \right )^{2}+y^{\prime } \sin \left (4 x \right )-4 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6.463

10236

\begin{align*} y^{\prime \prime }&=A y^{{2}/{3}} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.283

10237

\begin{align*} y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}+1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.289

10238

\begin{align*} y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.412

10239

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.407

10240

\begin{align*} 4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y&=4 \sqrt {x}\, {\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.585

10241

\begin{align*} y^{\prime \prime } x -\left (2 x +2\right ) y^{\prime }+\left (2+x \right ) y&=6 \,{\mathrm e}^{x} x^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.325

10242

\begin{align*} y^{\prime }+y&=\frac {1}{x} \\ \end{align*}
Series expansion around \(x=0\).

[[_linear, ‘class A‘]]

0.204

10243

\begin{align*} y^{\prime }+y&=\frac {1}{x^{2}} \\ \end{align*}
Series expansion around \(x=0\).

[[_linear, ‘class A‘]]

0.233

10244

\begin{align*} y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_separable]

0.125

10245

\begin{align*} y^{\prime }&=\frac {1}{x} \\ \end{align*}
Series expansion around \(x=0\).

[_quadrature]

0.110

10246

\begin{align*} y^{\prime \prime }&=\frac {1}{x} \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _quadrature]]

0.403

10247

\begin{align*} y^{\prime \prime }+y^{\prime }&=\frac {1}{x} \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_y]]

0.573

10248

\begin{align*} y^{\prime \prime }+y&=\frac {1}{x} \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.480

10249

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=\frac {1}{x} \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.536

10250

\begin{align*} h^{2}+\frac {2 a h}{\sqrt {1+{h^{\prime }}^{2}}}&=b^{2} \\ \end{align*}

[_quadrature]

1.494

10251

\begin{align*} y^{\prime \prime }+2 y^{\prime }-24 y&=16-\left (2+x \right ) {\mathrm e}^{4 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.477

10252

\begin{align*} y^{\prime \prime }+3 y^{\prime }-4 y&=6 \,{\mathrm e}^{2 t -2} \\ y \left (1\right ) &= 4 \\ y^{\prime }\left (1\right ) &= 5 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.240

10253

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{a \cos \left (x \right )} \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.880

10254

\begin{align*} y^{\prime }&=\frac {y}{2 y \ln \left (y\right )+y-x} \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

3.478

10255

\begin{align*} y^{\prime \prime } x -\left (2 x +1\right ) y^{\prime }+\left (x +1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.243

10256

\begin{align*} x^{2} y^{\prime }+{\mathrm e}^{-y}&=0 \\ \end{align*}

[_separable]

2.258

10257

\begin{align*} y^{\prime \prime }+{\mathrm e}^{y}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

4.974

10258

\begin{align*} y^{\prime }&=\frac {y x +3 x -2 y+6}{y x -3 x -2 y+6} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

14.168

10259

\begin{align*} y^{\prime }&=0 \\ \end{align*}

[_quadrature]

0.209

10260

\begin{align*} y^{\prime }&=a \\ \end{align*}

[_quadrature]

0.398

10261

\begin{align*} y^{\prime }&=x \\ \end{align*}

[_quadrature]

0.296

10262

\begin{align*} y^{\prime }&=1 \\ \end{align*}

[_quadrature]

0.385

10263

\begin{align*} y^{\prime }&=a x \\ \end{align*}

[_quadrature]

0.273

10264

\begin{align*} y^{\prime }&=a x y \\ \end{align*}

[_separable]

1.635

10265

\begin{align*} y^{\prime }&=a x +y \\ \end{align*}

[[_linear, ‘class A‘]]

0.655

10266

\begin{align*} y^{\prime }&=a x +b y \\ \end{align*}

[[_linear, ‘class A‘]]

0.852

10267

\begin{align*} y^{\prime }&=y \\ \end{align*}

[_quadrature]

0.407

10268

\begin{align*} y^{\prime }&=b y \\ \end{align*}

[_quadrature]

0.506

10269

\begin{align*} y^{\prime }&=a x +b y^{2} \\ \end{align*}

[[_Riccati, _special]]

38.549

10270

\begin{align*} c y^{\prime }&=0 \\ \end{align*}

[_quadrature]

0.224

10271

\begin{align*} c y^{\prime }&=a \\ \end{align*}

[_quadrature]

0.462

10272

\begin{align*} c y^{\prime }&=a x \\ \end{align*}

[_quadrature]

0.296

10273

\begin{align*} c y^{\prime }&=a x +y \\ \end{align*}

[[_linear, ‘class A‘]]

0.859

10274

\begin{align*} c y^{\prime }&=a x +b y \\ \end{align*}

[[_linear, ‘class A‘]]

0.917

10275

\begin{align*} c y^{\prime }&=y \\ \end{align*}

[_quadrature]

0.589

10276

\begin{align*} c y^{\prime }&=b y \\ \end{align*}

[_quadrature]

0.625

10277

\begin{align*} c y^{\prime }&=a x +b y^{2} \\ \end{align*}

[[_Riccati, _special]]

35.672

10278

\begin{align*} c y^{\prime }&=\frac {a x +b y^{2}}{r} \\ \end{align*}

[[_Riccati, _special]]

3.052

10279

\begin{align*} c y^{\prime }&=\frac {a x +b y^{2}}{r x} \\ \end{align*}

[_rational, _Riccati]

6.035

10280

\begin{align*} c y^{\prime }&=\frac {a x +b y^{2}}{r \,x^{2}} \\ \end{align*}

[_rational, _Riccati]

6.700

10281

\begin{align*} c y^{\prime }&=\frac {a x +b y^{2}}{y} \\ \end{align*}

[_rational, _Bernoulli]

2.098

10282

\begin{align*} a \sin \left (x \right ) y x y^{\prime }&=0 \\ \end{align*}

[_quadrature]

0.095

10283

\begin{align*} f \left (x \right ) \sin \left (x \right ) y x y^{\prime } \pi &=0 \\ \end{align*}

[_quadrature]

0.095

10284

\begin{align*} y^{\prime }&=y+\sin \left (x \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

1.506

10285

\begin{align*} y^{\prime }&=\sin \left (x \right )+y^{2} \\ \end{align*}

[_Riccati]

5.155

10286

\begin{align*} y^{\prime }&=\cos \left (x \right )+\frac {y}{x} \\ \end{align*}

[_linear]

1.780

10287

\begin{align*} y^{\prime }&=\cos \left (x \right )+\frac {y^{2}}{x} \\ \end{align*}

[_Riccati]

6.197

10288

\begin{align*} y^{\prime }&=x +y+b y^{2} \\ \end{align*}

[_Riccati]

80.244

10289

\begin{align*} y^{\prime } x&=0 \\ \end{align*}

[_quadrature]

0.235

10290

\begin{align*} 5 y^{\prime }&=0 \\ \end{align*}

[_quadrature]

0.236

10291

\begin{align*} {\mathrm e} y^{\prime }&=0 \\ \end{align*}

[_quadrature]

0.246

10292

\begin{align*} \pi y^{\prime }&=0 \\ \end{align*}

[_quadrature]

0.238

10293

\begin{align*} \sin \left (x \right ) y^{\prime }&=0 \\ \end{align*}

[_quadrature]

0.262

10294

\begin{align*} f \left (x \right ) y^{\prime }&=0 \\ \end{align*}

[_quadrature]

0.264

10295

\begin{align*} y^{\prime } x&=1 \\ \end{align*}

[_quadrature]

0.302

10296

\begin{align*} y^{\prime } x&=\sin \left (x \right ) \\ \end{align*}

[_quadrature]

0.253

10297

\begin{align*} \left (x -1\right ) y^{\prime }&=0 \\ \end{align*}

[_quadrature]

0.237

10298

\begin{align*} y^{\prime } y&=0 \\ \end{align*}

[_quadrature]

0.085

10299

\begin{align*} x y^{\prime } y&=0 \\ \end{align*}

[_quadrature]

0.092

10300

\begin{align*} x y \sin \left (x \right ) y^{\prime }&=0 \\ \end{align*}

[_quadrature]

0.094