83.49.10 problem Ex 10 page 127

Internal problem ID [19552]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Book Solved Excercises. Chapter VIII. Linear equations of second order
Problem number : Ex 10 page 127
Date solved : Monday, March 31, 2025 at 07:33:09 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x^{{1}/{3}}}+\left (\frac {1}{4 x^{{2}/{3}}}-\frac {1}{6 x^{{4}/{3}}}-\frac {6}{x^{2}}\right ) y&=0 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 21
ode:=diff(diff(y(x),x),x)+1/x^(1/3)*diff(y(x),x)+(1/4/x^(2/3)-1/6/x^(4/3)-6/x^2)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {{\mathrm e}^{-\frac {3 x^{{2}/{3}}}{4}} \left (c_2 \,x^{5}+c_1 \right )}{x^{2}} \]
Mathematica. Time used: 0.045 (sec). Leaf size: 34
ode=D[y[x],{x,2}]+1/x^(1/3)*D[y[x],x]+(1/(4*x^(2/3))-1/(6*x^(4/3))-6/x^2)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {e^{-\frac {3 x^{2/3}}{4}} \left (c_2 x^5+5 c_1\right )}{5 x^2} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((-6/x**2 + 1/(4*x**(2/3)) - 1/(6*x**(4/3)))*y(x) + Derivative(y(x), (x, 2)) + Derivative(y(x), x)/x**(1/3),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE x**(1/3)*Derivative(y(x), (x, 2)) + Derivative(y(x), x) - y(x)/(6*x) + y(x)/(4*x**(1/3)) - 6*y(x)/x**(5/3) cannot be solved by the factorable group method