Internal
problem
ID
[19515]
Book
:
A
Text
book
for
differentional
equations
for
postgraduate
students
by
Ray
and
Chaturvedi.
First
edition,
1958.
BHASKAR
press.
INDIA
Section
:
Book
Solved
Excercises.
Chapter
VI.
Homogeneous
linear
equations
with
variable
coefficients
Problem
number
:
Ex
9
page
89
Date
solved
:
Monday, March 31, 2025 at 07:28:53 PM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=(2*x-1)^3*diff(diff(diff(y(x),x),x),x)+(2*x-1)*diff(y(x),x)-2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(2*x-1)^3*D[y[x],{x,3}]+(2*x-1)*D[y[x],x]-2*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((2*x - 1)**3*Derivative(y(x), (x, 3)) + (2*x - 1)*Derivative(y(x), x) - 2*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-8*x**3*Derivative(y(x), (x, 3)) + 12*x**2*Derivative(y(x), (x, 3)) - 6*x*Derivative(y(x), (x, 3)) + 2*y(x) + Derivative(y(x), (x, 3)))/(2*x - 1) cannot be solved by the factorable group method