Internal
problem
ID
[19555]
Book
:
A
Text
book
for
differentional
equations
for
postgraduate
students
by
Ray
and
Chaturvedi.
First
edition,
1958.
BHASKAR
press.
INDIA
Section
:
Book
Solved
Excercises.
Chapter
VIII.
Linear
equations
of
second
order
Problem
number
:
Ex
13
page
130
Date
solved
:
Monday, March 31, 2025 at 07:33:14 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x)-(8*exp(2*x)+2)*diff(y(x),x)+4*exp(4*x)*y(x) = exp(6*x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]-(8*Exp[2*x]+2)*D[y[x],x]+4*Exp[4*x]*y[x]==Exp[6*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-8*exp(2*x) - 2)*Derivative(y(x), x) + 4*y(x)*exp(4*x) - exp(6*x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (4*y(x)*exp(4*x) - exp(6*x) + Derivative(y(x), (x, 2)))/(2*(4*exp(2*x) + 1)) cannot be solved by the factorable group method