Internal
problem
ID
[19562]
Book
:
A
Text
book
for
differentional
equations
for
postgraduate
students
by
Ray
and
Chaturvedi.
First
edition,
1958.
BHASKAR
press.
INDIA
Section
:
Book
Solved
Excercises.
Chapter
VIII.
Linear
equations
of
second
order
Problem
number
:
Ex
20
page
135
Date
solved
:
Monday, March 31, 2025 at 07:33:32 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=3*x^2*diff(diff(y(x),x),x)+(-6*x^2+6*x+2)*diff(y(x),x)-4*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=3*x^2*D[y[x],{x,2}]+(2+6*x-6*x^2)*D[y[x],x]-4*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(3*x**2*Derivative(y(x), (x, 2)) + (-6*x**2 + 6*x + 2)*Derivative(y(x), x) - 4*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -(-3*x**2*Derivative(y(x), (x, 2)) + 4*y(x))/(2*(-3*x**2 + 3*x + 1)) + Derivative(y(x), x) cannot be solved by the factorable group method