Internal
problem
ID
[19506]
Book
:
A
Text
book
for
differentional
equations
for
postgraduate
students
by
Ray
and
Chaturvedi.
First
edition,
1958.
BHASKAR
press.
INDIA
Section
:
Book
Solved
Excercises.
Chapter
V.
Singular
solutions
Problem
number
:
Ex
12
page
75
Date
solved
:
Monday, March 31, 2025 at 07:27:30 PM
CAS
classification
:
[`y=_G(x,y')`]
ode:=(2*x^2+1)*diff(y(x),x)^2+(x^2+2*x*y(x)+y(x)^2+2)*diff(y(x),x)+2*y(x)^2+1 = 0; dsolve(ode,y(x), singsol=all);
ode=(2*x^2+1)*D[y[x],x]^2+(x^2+2*x*y[x]+y[x]^2+2)*D[y[x],x]+2*y[x]^2+1==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((2*x**2 + 1)*Derivative(y(x), x)**2 + (x**2 + 2*x*y(x) + y(x)**2 + 2)*Derivative(y(x), x) + 2*y(x)**2 + 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out