Internal
problem
ID
[19516]
Book
:
A
Text
book
for
differentional
equations
for
postgraduate
students
by
Ray
and
Chaturvedi.
First
edition,
1958.
BHASKAR
press.
INDIA
Section
:
Book
Solved
Excercises.
Chapter
VI.
Homogeneous
linear
equations
with
variable
coefficients
Problem
number
:
Ex
10
page
89
Date
solved
:
Monday, March 31, 2025 at 07:28:54 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(x+a)^2*diff(diff(y(x),x),x)-4*(x+a)*diff(y(x),x)+6*y(x) = x; dsolve(ode,y(x), singsol=all);
ode=(x+a)^2*D[y[x],{x,2}]-4*(x+a)*D[y[x],x]+6*y[x]==x; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(-x + (a + x)**2*Derivative(y(x), (x, 2)) - (4*a + 4*x)*Derivative(y(x), x) + 6*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (a**2*Derivative(y(x), (x, 2)) + 2*a*x*Derivative(y(x), (x, 2)) + x**2*Derivative(y(x), (x, 2)) - x + 6*y(x))/(4*(a + x)) cannot be solved by the factorable group method