3.1 practice exams

  3.1.1 Midterm 1, oct 2001
  3.1.2 My solution to Midterm 1, oct 2001
  3.1.3 Midterm 1, oct 2018
  3.1.4 My solution to Midterm 1, oct 2018
  3.1.5 Final exam practice exam 1
  3.1.6 Final exam practice exam 2

3.1.1 Midterm 1, oct 2001

PDF

3.1.2 My solution to Midterm 1, oct 2001

   3.1.2.1 Problem 1
   3.1.2.2 Problem 2
   3.1.2.3 Problem 3
   3.1.2.4 Problem 4
PDF (letter size)
PDF (legal size)

3.1.2.1 Problem 1

Obtain impulse and step response for LTI described by (a) \(h\left [ n\right ] =\left ( \frac{1}{2}\right ) ^{n}u\left [ n\right ] \) (b) \(h\left ( t\right ) =e^{-\frac{1}{2}t}u\left ( t\right ) \)

solution

Part a Let \(x\left [ n\right ] =\delta \left [ n\right ] \), hence \begin{align*} y\left [ n\right ] & =\delta \left [ n\right ] \circledast h\left [ n\right ] \\ & =\sum _{k=-\infty }^{\infty }\delta \left [ k\right ] h\left [ n-k\right ] \end{align*}

But \(\delta \left [ k\right ] =0\) for all \(k\) except when \(k=0\). Hence the above reduces to \begin{align*} y\left [ n\right ] & =h\left [ n\right ] \\ & =\left ( \frac{1}{2}\right ) ^{n}u\left [ n\right ] \end{align*}

Let \(x\left [ n\right ] =u\left [ n\right ] \), hence\begin{align*} y\left [ n\right ] & =u\left [ n\right ] \circledast h\left [ n\right ] \\ & =\sum _{k=-\infty }^{\infty }h\left [ k\right ] x\left [ n-k\right ] \end{align*}

Folding \(x\left [ -n\right ] \), we see that for \(n<0\) then there no overlap with \(h\left [ n\right ] \). Hence \(y\left [ n\right ] =0\) for \(n<0\). As \(x\left [ -n\right ] \) is shifted to the right, then the convolution sum becomes \begin{align*} y\left [ n\right ] & =\sum _{k=0}^{n}h\left [ k\right ] \qquad n\geq 0\\ & =\sum _{k=0}^{n}\left ( \frac{1}{2}\right ) ^{k} \end{align*}

This is the partial sum, given by \(\frac{a^{1+n}-1}{a-1}\) where \(a=\frac{1}{2}<1\)\begin{align} \sum _{k=0}^{n}\left ( \frac{1}{2}\right ) ^{k} & =\frac{\left ( \frac{1}{2}\right ) ^{1+n}-1}{\frac{1}{2}-1}\nonumber \\ & =\frac{\left ( \frac{1}{2}\right ) ^{1+n}-1}{-\frac{1}{2}}\nonumber \\ & =2-2\left ( 2\right ) ^{-n-1}\nonumber \\ & =2-2^{-n}\tag{2} \end{align}

Therefore\[ y\left [ n\right ] =\left \{ \begin{array} [c]{ccc}2-2^{-n} & & n\geq 0\\ 0 & & n<0 \end{array} \right . \]

Part b Let \(x\left ( t\right ) =\delta \left ( t\right ) \), hence\begin{align*} y\left ( t\right ) & =u\left ( t\right ) \circledast h\left ( t\right ) \\ & =\int _{-\infty }^{\infty }x\left ( \tau \right ) h\left ( t-\tau \right ) d\tau \\ & =\int _{-\infty }^{\infty }\delta \left ( t\right ) h\left ( t-\tau \right ) d\tau \\ & =h\left ( t\right ) \\ & =e^{-0.5t} \end{align*}

Let \(x\left ( t\right ) =u\left ( t\right ) \), hence\begin{align*} y\left ( t\right ) & =u\left ( t\right ) \circledast h\left ( t\right ) \\ & =\int _{-\infty }^{\infty }x\left ( t-\tau \right ) h\left ( \tau \right ) d\tau \end{align*}

Folding \(u\left ( -t\right ) \), we see that for \(t<0\) then there no overlap with \(h\left ( \tau \right ) =e^{-0.5\tau }u\left ( \tau \right ) \). Hence \(y\left ( t\right ) =0\) for \(t<0\). As \(u\left [ -n\right ] \) is shifted to the right, then the convolution becomes \begin{align*} y\left [ n\right ] & =\int _{0}^{t}h\left ( \tau \right ) d\tau \qquad t>0\\ & =\int _{0}^{t}e^{-0.5\tau }d\tau \\ & =\left ( \frac{e^{-0.5\tau }}{-0.5}\right ) _{0}^{t}\\ & =-2\left ( e^{-0.5t}-1\right ) \\ & =2-2e^{-0.5t}\\ & =2\left ( 1-e^{-0.5t}\right ) \end{align*}

Hence

\[ y\left ( t\right ) =\left \{ \begin{array} [c]{ccc}2\left ( 1-e^{-0.5t}\right ) & & t\geq 0\\ 0 & & t<0 \end{array} \right . \]

3.1.2.2 Problem 2

Given the frequency response of LTI system \(H\left ( \Omega \right ) \) for the following input signal, find the steady state expression of the output signal. (a) \(x\left [ n\right ] =2\cos \left ( \frac{\pi }{6}n+\frac{\pi }{5}\right ) \) (b) \(x\left [ n\right ] =5\sin \left ( \frac{\pi }{3}n+\frac{\pi }{8}\right ) \)

solution

Part a \[ x\left [ n\right ] =2\cos \left ( \frac{\pi }{6}n+\frac{\pi }{5}\right ) \] To find the fundamental period, \(\cos \left ( \frac{\pi }{6}n+\frac{\pi }{5}\right ) =\cos \left ( \frac{\pi }{6}\left ( n+N\right ) +\frac{\pi }{5}\right ) =\cos \left ( \left ( \frac{\pi }{6}n+\frac{\pi }{5}\right ) +\frac{\pi }{6}N\right ) \). Hence need \(\frac{\pi }{6}N=m2\pi \) or \(\frac{m}{N}=\frac{1}{12}\). Hence. \(N=12\). Therefore \[ \Omega _{0}=\frac{2\pi }{12}\] And the input is \(x\left [ n\right ] =2\cos \left ( \Omega _{0}n+\frac{\pi }{5}\right ) \). Hence the output is\[ y\left [ n\right ] =2\left \vert H\left ( \Omega _{0}\right ) \right \vert \cos \left ( \Omega _{0}n+\frac{\pi }{5}+\arg H\left ( \Omega _{0}\right ) \right ) \]

Part b \[ x\left [ n\right ] =5\sin \left ( \frac{\pi }{3}n+\frac{\pi }{8}\right ) \] To find the fundamental period, \(\sin \left ( \frac{\pi }{3}n+\frac{\pi }{8}\right ) =\sin \left ( \frac{\pi }{3}\left ( n+N\right ) +\frac{\pi }{8}\right ) =\sin \left ( \frac{\pi }{3}n+\frac{\pi }{8}+\frac{\pi }{3}N\right ) \). Hence need \(\frac{\pi }{3}N=m2\pi \) or \(\frac{m}{N}=\frac{1}{6}\). Hence. \(N=6\). Therefore\[ \Omega _{0}=\frac{2\pi }{6}\] And the input is \(x\left [ n\right ] =5\sin \left ( \Omega _{0}n+\frac{\pi }{8}\right ) \). Hence the output is\[ y\left [ n\right ] =5\left \vert H\left ( \Omega _{0}\right ) \right \vert \sin \left ( \Omega _{0}n+\frac{\pi }{8}+\arg H\left ( \Omega _{0}\right ) \right ) \]

3.1.2.3 Problem 3

Compute Fourier series coeff. for the following signals. (a) \(x\left [ n\right ] =2\sin \left ( \frac{\pi }{3}n+\frac{\pi }{2}\right ) +3\cos \left ( \frac{\pi }{6}n+\frac{\pi }{5}\right ) \). (b) \(x\left ( t\right ) =e^{j2\pi t}+e^{j3\pi t}\)

solution

Part a For discrete periodic signal, the Fourier series coeff. \(a_{k}\) is given by\begin{align} x\left [ n\right ] & =\sum _{k=-\infty }^{\infty }a_{k}e^{jk\left ( \frac{2\pi }{N}\right ) n}\tag{1}\\ a_{k} & =\frac{1}{N}\sum _{n=0}^{N-1}x\left [ n\right ] e^{-jk\left ( \frac{2\pi }{N}\right ) n}\tag{2} \end{align}

In this problem

\[ x\left [ n\right ] =2\sin \left ( \frac{\pi }{3}n+\frac{\pi }{2}\right ) +3\cos \left ( \frac{\pi }{6}n+\frac{\pi }{5}\right ) \] To find the common fundamental period. \(\sin \left ( \frac{\pi }{3}n+\frac{\pi }{2}\right ) =\sin \left ( \frac{\pi }{3}\left ( n+N\right ) +\frac{\pi }{2}\right ) =\sin \left ( \left ( \frac{\pi }{3}n+\frac{\pi }{2}\right ) +\frac{\pi }{3}N\right ) \). Hence \(\frac{\pi }{3}N=m2\pi \) or \(\frac{m}{N}=\frac{1}{6}\). hence \(N=6\) for first signal. For second signal \(\cos \left ( \frac{\pi }{6}n+\frac{\pi }{5}\right ) \) we obtain \(\frac{\pi }{6}N=m2\pi \) or \(\frac{m}{N}=\frac{1}{12}\) or \(N=12\). hence the least common multiplier between \(6\) and \(12\) is \(N=12\). Therefore \[ \Omega _{0}=\frac{2\pi }{12}\] Hence (2) becomes\begin{align*} a_{k} & =\frac{1}{12}\sum _{n=0}^{11}x\left [ n\right ] e^{-jk\left ( \frac{2\pi }{12}\right ) n}\\ & =\frac{1}{12}\sum _{n=0}^{11}x\left [ n\right ] e^{-jk\Omega _{0}n} \end{align*}

But instead of using the above formula, an easier way is to rewrite \(x\left [ n\right ] \)  using Euler relation and use (1) to read off \(a_{k}\) directly from the result. Writing \(x\left [ n\right ] \) in terms of the fundamental frequency \(\Omega _{0}\) gives\begin{align*} x\left [ n\right ] & =2\sin \left ( 2\Omega _{0}n+\frac{\pi }{2}\right ) +3\cos \left ( \Omega _{0}n+\frac{\pi }{5}\right ) \\ & =2\left ( \frac{e^{j\left ( 2\Omega _{0}n+\frac{\pi }{2}\right ) }-e^{-j\left ( 2\Omega _{0}n+\frac{\pi }{2}\right ) }}{2j}\right ) +3\left ( \frac{e^{j\left ( \Omega _{0}n+\frac{\pi }{5}\right ) }+e^{-j\left ( \Omega _{0}n+\frac{\pi }{5}\right ) }}{2}\right ) \\ & =\frac{2}{2j}\left ( e^{j\frac{\pi }{2}}e^{j2\Omega _{0}n}-e^{-j\frac{\pi }{2}}e^{-j2\Omega _{0}n}\right ) +\frac{3}{2}\left ( e^{j\frac{\pi }{5}}e^{j\Omega _{0}n}+e^{-j\frac{\pi }{5}}e^{-j\Omega _{0}n}\right ) \\ & =\frac{1}{j}e^{j\frac{\pi }{2}}e^{j2\Omega _{0}n}-\frac{1}{j}e^{-j\frac{\pi }{2}}e^{-j2\Omega _{0}n}+\frac{3}{2}e^{j\frac{\pi }{5}}e^{j\Omega _{0}n}+\frac{3}{2}e^{-j\frac{\pi }{5}}e^{-j\Omega _{0}n} \end{align*}

Now we can read the Fourier coefficients by comparing the above to Eq(1).

This gives for \(k=2,a_{2}=\frac{1}{j}e^{j\frac{\pi }{2}}\) and for \(k=-2,a_{-2}=-\frac{1}{j}e^{-j\frac{\pi }{2}}\) and for \(k=1,a_{1}=\frac{3}{2}e^{j\frac{\pi }{5}}\) and for \(k=-1,a_{-1}=\frac{3}{2}e^{-j\frac{\pi }{5}}\)\begin{align*} a_{1} & =\frac{3}{2}e^{j\frac{\pi }{5}}\\ a_{-1} & =\frac{3}{2}e^{-j\frac{\pi }{5}}\\ a_{2} & =\frac{1}{j}e^{j\frac{\pi }{2}}\\ a_{-2} & =-\frac{1}{j}e^{-j\frac{\pi }{2}} \end{align*}

But \(e^{j\frac{\pi }{2}}=j\sin \frac{\pi }{2}=j\) and \(e^{-j\frac{\pi }{2}}=-j\sin \frac{\pi }{2}=-j\). Hence the above becomes\begin{align*} a_{1} & =\frac{3}{2}e^{j\frac{\pi }{5}}\\ a_{-1} & =\frac{3}{2}e^{-j\frac{\pi }{5}}\\ a_{2} & =\frac{1}{j}j=1\\ a_{-2} & =-\frac{1}{j}\left ( -j\right ) =1 \end{align*}

And \(a_{k}=0\) for all other \(k\).

Part b For continuos time periodic signal \(x\left ( t\right ) \), the Fourier series coeff. \(a_{k}\) is given by\begin{align*} x\left ( t\right ) & =\sum _{k=-\infty }^{\infty }a_{k}e^{jk\omega _{0}t}\\ a_{k} & =\frac{1}{T}\int _{T}x\left ( t\right ) e^{-jk\omega _{0}t}dt \end{align*}

In this problem\[ x\left ( t\right ) =e^{j2\pi t}+e^{j3\pi t}\] The period of \(e^{j2\pi t}\) is \(1\) and the period of \(e^{j3\pi t}\) is \(\frac{2}{3}\). Hence least common multiplier is \(T_{0}=2\) seconds. \(\omega _{0}=\frac{2\pi }{2}=\pi \) rad/sec. Both of the above terms can now be written \begin{align*} x\left ( t\right ) & =e^{j\frac{4\pi }{T_{0}}t}+e^{j\frac{6\pi }{T_{0}}t}\\ & =e^{j2\omega _{0}t}+e^{j3\omega _{0}t} \end{align*}

Comparing the above to\[ x\left ( t\right ) =\sum _{k=-\infty }^{\infty }a_{k}e^{jk\omega _{0}t}\] Shows that  for \(k=2,a_{k}=1\) and for \(k=3,a_{k}=1\) and \(a_{k}=0\) for all other \(k\).

3.1.2.4 Problem 4

Given the magnitude and phase profile of this filter, find impulse response.

solution

We are given \(H\left ( \Omega \right ) \) and need to find \(h\left [ n\right ] \). i.e. the inverse Fourier transform \begin{align*} h\left [ n\right ] & =\frac{1}{2\pi }\int _{-\pi }^{\pi }H\left ( \Omega \right ) e^{j\Omega n}d\Omega \\ & =\frac{1}{2\pi }\int _{-\pi }^{\pi }\left \vert H\left ( \Omega \right ) \right \vert e^{j\arg H\left ( \Omega \right ) }e^{j\Omega n}d\Omega \end{align*}

But \(\left \vert H\left ( \Omega \right ) \right \vert =1\) and \(\arg H\left ( \Omega \right ) =-\Omega \) as given. The above reduces to\begin{align*} h\left [ n\right ] & =\frac{1}{2\pi }\int _{-\frac{\pi }{4}}^{\frac{\pi }{4}}e^{-j\Omega }e^{j\Omega n}d\Omega \\ & =\frac{1}{2\pi }\int _{-\frac{\pi }{4}}^{\frac{\pi }{4}}e^{-j\Omega \left ( 1-n\right ) }d\Omega \\ & =\left ( \frac{1}{2\pi }\right ) \frac{1}{-j\left ( 1-n\right ) }\left [ e^{-j\Omega \left ( 1-n\right ) }\right ] _{-\frac{\pi }{4}}^{\frac{\pi }{4}}\\ & =\left ( \frac{1}{2\pi }\right ) \frac{1}{-j\left ( 1-n\right ) }\left ( e^{-j\frac{\pi }{4}\left ( 1-n\right ) }-e^{j\frac{\pi }{4}\left ( 1-n\right ) }\right ) \\ & =\frac{1}{\pi }\frac{1}{\left ( 1-n\right ) }\left ( \frac{e^{j\frac{\pi }{4}\left ( 1-n\right ) }-e^{-j\frac{\pi }{4}\left ( 1-n\right ) }}{2j}\right ) \\ & =\frac{1}{\pi \left ( 1-n\right ) }\sin \left ( \frac{\pi }{4}\left ( 1-n\right ) \right ) \\ & =\frac{-1}{\pi \left ( 1-n\right ) }\sin \left ( \frac{\pi }{4}\left ( n-1\right ) \right ) \\ & =\frac{1}{\pi \left ( n-1\right ) }\sin \left ( \frac{\pi }{4}\left ( n-1\right ) \right ) \end{align*}

3.1.3 Midterm 1, oct 2018

PDF

3.1.4 My solution to Midterm 1, oct 2018

   3.1.4.1 Problem 1
   3.1.4.2 Problem 2
   3.1.4.3 Problem 3
PDF (letter size)
PDF (legal size)

3.1.4.1 Problem 1

Given the discrete time system with input \(x\left [ n\right ] \) and impulse response \(h\left [ n\right ] \) obtain the output sequence \(y\left [ n\right ] \) by applying discrete convolution.

\(x\left [ n\right ] =\left [ 1,0,-1,1\right ] ,h\left [ n\right ] =\left [ 1,1,-1,-1\right ] \). Both sequences are positive and start with \(n=0\) position.

Solution\[ y\left [ n\right ] =x\left [ n\right ] \circledast h\left [ n\right ] \] Folding \(x\left [ -n\right ] \). When \(n=0,y\left [ 0\right ] =1\). When \(n=1\), then \(y\left [ n\right ] =\left ( 0\right ) \left ( 1\right ) +\left ( 1\right ) \left ( 1\right ) =1\). When \(n=2,y\left [ n\right ] =\left ( -1\right ) \left ( 1\right ) +\left ( 0\right ) \left ( 1\right ) +\left ( 1\right ) \left ( -1\right ) =-2\). When \(n=3,y\left [ n\right ] =\left ( 1\right ) \left ( 1\right ) +\left ( -1\right ) \left ( 1\right ) +\left ( 0\right ) \left ( -1\right ) +\left ( 1\right ) \left ( -1\right ) =1-1-1=-1\). When \(n=4,y\left [ n\right ] =1+1=2\). When \(n=5,y\left [ n\right ] =-1+1=0\), when \(n=6,y\left [ 6\right ] =-1\). When \(n>6\,,y\left [ n\right ] =0\).

Hence \[ y\left [ n\right ] =\left [ 1,1,-2,-1,2,0,-1\right ] \]

3.1.4.2 Problem 2

The impulse response of LTI system is given by \(h\left ( t\right ) =u\left ( t\right ) -2u\left ( t-1\right ) +u\left ( t-2\right ) \) where \(u\left ( t\right ) \) is unit step signal. Determine the output of this \(y\left ( t\right ) \) where its input \(x\left ( t\right ) \) is given as \(x\left ( t\right ) =e^{-t}u\left ( t+1\right ) \).

Solution

By folding \(x\left ( t\right ) \). See key solution. Used same method.

3.1.4.3 Problem 3

A discrete periodic sequence is given as \(x\left [ n\right ] =2\sin \left ( \frac{3\pi }{8}n+\frac{\pi }{2}\right ) +\cos \left ( \frac{\pi }{4}n+\frac{\pi }{3}\right ) \). (a) Find fundamental frequency of this signal. (b) Fourier series coefficients for \(x\left [ n\right ] \). (c) if \(x\left [ n\right ] =\cos \left ( \frac{\pi }{4}n+\frac{\pi }{3}\right ) \) is an input to system with frequency response \(H\left ( \Omega \right ) =\frac{1-e^{-j\Omega }}{2+e^{-2j\Omega }}\), obtain expression for \(y\left [ n\right ] \)

Solution

Part a For \(\sin \left ( \frac{3\pi }{8}n+\frac{\pi }{2}\right ) \), we need \(\frac{3}{8}\pi N=m2\pi \) or \(\frac{m}{N}=\frac{3}{16}\). Since relatively prime, hence \(N=16\). For \(\cos \left ( \frac{\pi }{4}n+\frac{\pi }{3}\right ) \) we need \(\frac{\pi }{4}N=m2\pi \) or \(\frac{m}{N}=\frac{1}{8}\). Hence \(N=8\). The least common multiplier is \(16\). Hence fundamental period is \(N=16\). Therefore \(\Omega _{0}=\frac{2\pi }{N}=\frac{\pi }{8}\).

Part b Since input is periodic, then\begin{equation} x\left [ n\right ] =\sum _{k=-\infty }^{\infty }a_{k}e^{jk\Omega _{0}n} \tag{1} \end{equation} By writing the input, using Euler relation, we can compare the input to the above and read off \(a_{k}\). First we rewrite the input using common \(\Omega _{0}\) as\[ x\left [ n\right ] =2\sin \left ( 3\Omega _{0}n+\frac{\pi }{2}\right ) +\cos \left ( 2\Omega _{0}n+\frac{\pi }{3}\right ) \] Hence\begin{align*} x\left [ n\right ] & =2\left ( \frac{e^{j\left ( 3\Omega _{0}n+\frac{\pi }{2}\right ) }-e^{-j\left ( 3\Omega _{0}n+\frac{\pi }{2}\right ) }}{2j}\right ) +\frac{e^{j\left ( 2\Omega _{0}n+\frac{\pi }{3}\right ) }+e^{-j\left ( 2\Omega _{0}n+\frac{\pi }{3}\right ) }}{2}\\ & =\frac{1}{j}e^{j\left ( 3\Omega _{0}n+\frac{\pi }{2}\right ) }-\frac{1}{j}e^{-j\left ( 3\Omega _{0}n+\frac{\pi }{2}\right ) }+\frac{1}{2}e^{j\left ( 2\Omega _{0}n+\frac{\pi }{3}\right ) }+\frac{1}{2}e^{-j\left ( 2\Omega _{0}n+\frac{\pi }{3}\right ) }\\ & =\frac{1}{j}e^{j\frac{\pi }{2}}e^{j3\Omega _{0}n}-\frac{1}{j}e^{-j\frac{\pi }{2}}e^{-j3\Omega _{0}n}+\frac{1}{2}e^{j\frac{\pi }{3}}e^{j2\Omega _{0}n}+\frac{1}{2}e^{-j\frac{\pi }{3}}e^{-j2\Omega _{0}n} \end{align*}

But \(e^{j\frac{\pi }{2}}=j\sin \frac{\pi }{2}=j\) and \(e^{-j\frac{\pi }{2}}=-j\sin \frac{\pi }{2}=-j\) and \(e^{j\frac{\pi }{3}}=\cos \left ( \frac{\pi }{3}\right ) +j\sin \left ( \frac{\pi }{3}\right ) =\frac{1}{2}\sqrt{3}j+\frac{1}{2}\) and \(e^{-j\frac{\pi }{3}}=\cos \left ( \frac{\pi }{3}\right ) -j\sin \left ( \frac{\pi }{3}\right ) =\frac{1}{2}-\frac{1}{2}\sqrt{3}j\). Hence the above simplifies to\begin{equation} x\left [ n\right ] =e^{j3\Omega _{0}n}+e^{-j3\Omega _{0}n}+\frac{1}{4}\left ( 1+\sqrt{3}j\right ) e^{j2\Omega _{0}n}-\frac{1}{4}\left ( 1-\sqrt{3}j\right ) e^{-j2\Omega _{0}n} \tag{2} \end{equation} Comparing (2) to (1) shows that\begin{align*} a_{3} & =1\\ a_{-3} & =1\\ a_{2} & =\frac{1}{2}e^{j\frac{\pi }{3}}=\frac{1}{4}\left ( 1+\sqrt{3}j\right ) \\ a_{-2} & =\frac{1}{2}e^{-j\frac{\pi }{3}}=-\frac{1}{4}\left ( 1-\sqrt{3}j\right ) \end{align*}

Part c The output is\begin{equation} y\left [ n\right ] =\left \vert H\left ( \Omega \right ) \right \vert _{\Omega =\frac{\pi }{4}}\cos \left ( \frac{\pi }{4}n+\frac{\pi }{3}+\arg H\left ( \Omega \right ) _{\Omega =\frac{\pi }{4}}\right ) \tag{1} \end{equation} But\begin{align*} \left \vert H\left ( \Omega \right ) \right \vert & =\left \vert \frac{1-e^{-j\Omega }}{2+e^{-2j\Omega }}\right \vert \\ & =\frac{\left \vert 1-e^{-j\Omega }\right \vert }{\left \vert 2+e^{-2j\Omega }\right \vert }\\ & =\frac{\sqrt{\left ( 1-\cos \Omega \right ) ^{2}+\sin ^{2}\Omega }}{\sqrt{\left ( 2+\cos 2\Omega \right ) ^{2}+\sin ^{2}\left ( 2\Omega \right ) }} \end{align*}

When \(\Omega =\frac{\pi }{4}\) the above becomes\begin{align*} \left \vert H\left ( \frac{\pi }{4}\right ) \right \vert & =\frac{\sqrt{\left ( 1-\cos \left ( \frac{\pi }{4}\right ) \right ) ^{2}+\sin ^{2}\left ( \frac{\pi }{4}\right ) }}{\sqrt{\left ( 2+\cos \left ( \frac{\pi }{2}\right ) \right ) ^{2}+\sin ^{2}\left ( \frac{\pi }{2}\right ) }}\\ & =\frac{\sqrt{\left ( 1-\cos \left ( \frac{\pi }{4}\right ) \right ) ^{2}+\sin ^{2}\left ( \frac{\pi }{4}\right ) }}{\sqrt{4+1}}\\ & =\frac{\sqrt{\frac{3}{2}-\sqrt{2}+\frac{1}{2}}}{\sqrt{5}}\\ & =\frac{\sqrt{2-\sqrt{2}}}{\sqrt{5}}\\ & =0.342\,28 \end{align*}

And \begin{align*} \arg H\left ( \Omega \right ) & =\arg \frac{1-e^{-j\Omega }}{2+e^{-2j\Omega }}\\ & =\arg \frac{\left ( 1-\cos \Omega \right ) +j\sin \Omega }{\left ( 2+\cos \left ( 2\Omega \right ) \right ) -j\sin \left ( 2\Omega \right ) }\\ & =\arctan \left ( \frac{\sin \Omega }{1-\cos \Omega }\right ) -\arctan \left ( \frac{-\sin \left ( 2\Omega \right ) }{2+\cos \left ( 2\Omega \right ) }\right ) \end{align*}

When \(\Omega =\frac{\pi }{4}\) the above becomes\begin{align*} \arg H\left ( \frac{\pi }{4}\right ) & =\arctan \left ( \frac{\sin \left ( \frac{\pi }{4}\right ) }{1-\cos \left ( \frac{\pi }{4}\right ) }\right ) -\arctan \left ( \frac{-\sin \left ( \frac{\pi }{2}\right ) }{2+\cos \left ( \frac{\pi }{2}\right ) }\right ) \\ & =\arctan \left ( \frac{\sin \left ( \frac{\pi }{4}\right ) }{1-\cos \left ( \frac{\pi }{4}\right ) }\right ) -\arctan \left ( \frac{-1}{2}\right ) \\ & =\arctan \left ( \frac{\sin \left ( \frac{\pi }{4}\right ) }{1-\cos \left ( \frac{\pi }{4}\right ) }\right ) +\arctan \left ( \frac{1}{2}\right ) \\ & =\arctan \left ( 2.4142\right ) +0.46365\\ & =1.1781+0.46365\\ & =1.6418\text{ rad} \end{align*}

Hence (1) becomes\[ y\left [ n\right ] =0.3423\cos \left ( \frac{\pi }{4}n+\frac{\pi }{3}+1.6418\right ) \]

3.1.5 Final exam practice exam 1

PDF

3.1.6 Final exam practice exam 2

PDF