# my solution to practice exam midterm 12001 

EE 3015<br>Signals and Systems

Spring 2020<br>University of Minnesota, Twin Cities

Nasser M. Abbasi

May 27, $2020 \quad$ Compiled on May 27,2020 at 12:28am

Contents

### 0.1 Problem 1

Obtain impulse and step response for LTI described by (a) $h[n]=\left(\frac{1}{2}\right)^{n} u[n]$ (b) $h(t)=$ $e^{-\frac{1}{2} t} u(t)$
solution
Part a Let $x[n]=\delta[n]$, hence

$$
\begin{aligned}
y[n] & =\delta[n] \circledast h[n] \\
& =\sum_{k=-\infty}^{\infty} \delta[k] h[n-k]
\end{aligned}
$$

But $\delta[k]=0$ for all $k$ except when $k=0$. Hence the above reduces to

$$
\begin{aligned}
y[n] & =h[n] \\
& =\left(\frac{1}{2}\right)^{n} u[n]
\end{aligned}
$$

Let $x[n]=u[n]$, hence

$$
\begin{aligned}
y[n] & =u[n] \circledast h[n] \\
& =\sum_{k=-\infty}^{\infty} h[k] x[n-k]
\end{aligned}
$$

Folding $x[-n]$, we see that for $n<0$ then there no overlap with $h[n]$. Hence $y[n]=0$ for $n<0$. As $x[-n]$ is shifted to the right, then the convolution sum becomes

$$
\begin{aligned}
y[n] & =\sum_{k=0}^{n} h[k] \quad n \geq 0 \\
& =\sum_{k=0}^{n}\left(\frac{1}{2}\right)^{k}
\end{aligned}
$$

This is the partial sum, given by $\frac{a^{1+n}-1}{a-1}$ where $a=\frac{1}{2}<1$

$$
\begin{align*}
\sum_{k=0}^{n}\left(\frac{1}{2}\right)^{k} & =\frac{\left(\frac{1}{2}\right)^{1+n}-1}{\frac{1}{2}-1} \\
& =\frac{\left(\frac{1}{2}\right)^{1+n}-1}{-\frac{1}{2}} \\
& =2-2(2)^{-n-1} \\
& =2-2^{-n} \tag{2}
\end{align*}
$$

Therefore

$$
y[n]=\left\{\begin{array}{cc}
2-2^{-n} & n \geq 0 \\
0 & n<0
\end{array}\right.
$$

Part b Let $x(t)=\delta(t)$, hence

$$
\begin{aligned}
y(t) & =u(t) \circledast h(t) \\
& =\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau \\
& =\int_{-\infty}^{\infty} \delta(t) h(t-\tau) d \tau \\
& =h(t) \\
& =e^{-0.5 t}
\end{aligned}
$$

Let $x(t)=u(t)$, hence

$$
\begin{aligned}
y(t) & =u(t) \circledast h(t) \\
& =\int_{-\infty}^{\infty} x(t-\tau) h(\tau) d \tau
\end{aligned}
$$

Folding $u(-t)$, we see that for $t<0$ then there no overlap with $h(\tau)=e^{-0.5 \tau} u(\tau)$. Hence $y(t)=0$ for $t<0$. As $u[-n]$ is shifted to the right, then the convolution becomes

$$
\begin{aligned}
y[n] & =\int_{0}^{t} h(\tau) d \tau \quad t>0 \\
& =\int_{0}^{t} e^{-0.5 \tau} d \tau \\
& =\left(\frac{e^{-0.5 \tau}}{-0.5}\right)_{0}^{t} \\
& =-2\left(e^{-0.5 t}-1\right) \\
& =2-2 e^{-0.5 t} \\
& =2\left(1-e^{-0.5 t}\right)
\end{aligned}
$$

Hence

$$
y(t)=\left\{\begin{array}{cc}
2\left(1-e^{-0.5 t}\right) & t \geq 0 \\
0 & t<0
\end{array}\right.
$$

### 0.2 Problem 2

Given the frequency response of LTI system $H(\Omega)$ for the following input signal, find the steady state expression of the output signal. (a) $x[n]=2 \cos \left(\frac{\pi}{6} n+\frac{\pi}{5}\right)$ (b) $x[n]=$ $5 \sin \left(\frac{\pi}{3} n+\frac{\pi}{8}\right)$
solution

## Part a

$$
x[n]=2 \cos \left(\frac{\pi}{6} n+\frac{\pi}{5}\right)
$$

To find the fundamental period, $\cos \left(\frac{\pi}{6} n+\frac{\pi}{5}\right)=\cos \left(\frac{\pi}{6}(n+N)+\frac{\pi}{5}\right)=\cos \left(\left(\frac{\pi}{6} n+\frac{\pi}{5}\right)+\frac{\pi}{6} N\right)$. Hence need $\frac{\pi}{6} N=m 2 \pi$ or $\frac{m}{N}=\frac{1}{12}$. Hence. $N=12$. Therefore

$$
\Omega_{0}=\frac{2 \pi}{12}
$$

And the input is $x[n]=2 \cos \left(\Omega_{0} n+\frac{\pi}{5}\right)$. Hence the output is

$$
y[n]=2\left|H\left(\Omega_{0}\right)\right| \cos \left(\Omega_{0} n+\frac{\pi}{5}+\arg H\left(\Omega_{0}\right)\right)
$$

## Part b

$$
x[n]=5 \sin \left(\frac{\pi}{3} n+\frac{\pi}{8}\right)
$$

To find the fundamental period, $\sin \left(\frac{\pi}{3} n+\frac{\pi}{8}\right)=\sin \left(\frac{\pi}{3}(n+N)+\frac{\pi}{8}\right)=\sin \left(\frac{\pi}{3} n+\frac{\pi}{8}+\frac{\pi}{3} N\right)$. Hence need $\frac{\pi}{3} N=m 2 \pi$ or $\frac{m}{N}=\frac{1}{6}$. Hence. $N=6$. Therefore

$$
\Omega_{0}=\frac{2 \pi}{6}
$$

And the input is $x[n]=5 \sin \left(\Omega_{0} n+\frac{\pi}{8}\right)$. Hence the output is

$$
y[n]=5\left|H\left(\Omega_{0}\right)\right| \sin \left(\Omega_{0} n+\frac{\pi}{8}+\arg H\left(\Omega_{0}\right)\right)
$$

### 0.3 Problem 3

Compute Fourier series coeff. for the following signals. (a) $x[n]=2 \sin \left(\frac{\pi}{3} n+\frac{\pi}{2}\right)+3 \cos \left(\frac{\pi}{6} n+\frac{\pi}{5}\right)$.
(b) $x(t)=e^{j 2 \pi t}+e^{j 3 \pi t}$

## solution

Part a For discrete periodic signal, the Fourier series coeff. $a_{k}$ is given by

$$
\begin{align*}
x[n] & =\sum_{k=-\infty}^{\infty} a_{k} e^{j k\left(\frac{2 \pi}{N}\right) n}  \tag{1}\\
a_{k} & =\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j k\left(\frac{2 \pi}{N}\right) n} \tag{2}
\end{align*}
$$

In this problem

$$
x[n]=2 \sin \left(\frac{\pi}{3} n+\frac{\pi}{2}\right)+3 \cos \left(\frac{\pi}{6} n+\frac{\pi}{5}\right)
$$

To find the common fundamental period. $\sin \left(\frac{\pi}{3} n+\frac{\pi}{2}\right)=\sin \left(\frac{\pi}{3}(n+N)+\frac{\pi}{2}\right)=\sin \left(\left(\frac{\pi}{3} n+\frac{\pi}{2}\right)+\frac{\pi}{3} N\right)$.
Hence $\frac{\pi}{3} N=m 2 \pi$ or $\frac{m}{N}=\frac{1}{6}$. hence $N=6$ for first signal. For second signal $\cos \left(\frac{\pi}{6} n+\frac{\pi}{5}\right)$ we obtain $\frac{\pi}{6} N=m 2 \pi$ or $\frac{m}{N}=\frac{1}{12}$ or $N=12$. hence the least common multiplier between 6 and 12 is $N=12$. Therefore

$$
\Omega_{0}=\frac{2 \pi}{12}
$$

Hence (2) becomes

$$
\begin{aligned}
a_{k} & =\frac{1}{12} \sum_{n=0}^{11} x[n] e^{-j k\left(\frac{2 \pi}{12}\right) n} \\
& =\frac{1}{12} \sum_{n=0}^{11} x[n] e^{-j k \Omega_{0} n}
\end{aligned}
$$

But instead of using the above formula, an easier way is to rewrite $x[n]$ using Euler relation and use (1) to read off $a_{k}$ directly from the result. Writing $x[n]$ in terms of the fundamental frequency $\Omega_{0}$ gives

$$
\begin{aligned}
x[n] & =2 \sin \left(2 \Omega_{0} n+\frac{\pi}{2}\right)+3 \cos \left(\Omega_{0} n+\frac{\pi}{5}\right) \\
& =2\left(\frac{e^{j\left(2 \Omega_{0} n+\frac{\pi}{2}\right)}-e^{-j\left(2 \Omega_{0} n+\frac{\pi}{2}\right)}}{2 j}\right)+3\left(\frac{e^{j\left(\Omega_{0} n+\frac{\pi}{5}\right)}+e^{-j\left(\Omega_{0} n+\frac{\pi}{5}\right)}}{2}\right) \\
& =\frac{2}{2 j}\left(e^{j \frac{\pi}{2}} e^{j 2 \Omega_{0} n}-e^{-j \frac{\pi}{2}} e^{-j 2 \Omega_{0} n}\right)+\frac{3}{2}\left(e^{j \frac{\pi}{5}} e^{j \Omega_{0} n}+e^{-j \frac{\pi}{5}} e^{-j \Omega_{0} n}\right) \\
& =\frac{1}{j} e^{j \frac{\pi}{2}} e^{j 2 \Omega_{0} n}-\frac{1}{j} e^{-j \frac{\pi}{2}} e^{-j 2 \Omega_{0} n}+\frac{3}{2} e^{j \frac{\pi}{5}} e^{j \Omega_{0} n}+\frac{3}{2} e^{-j \frac{\pi}{5}} e^{-j \Omega_{0} n}
\end{aligned}
$$

Now we can read the Fourier coefficients by comparing the above to $\mathrm{Eq}(1)$.
This gives for $k=2, a_{2}=\frac{1}{j} e^{j \frac{\pi}{2}}$ and for $k=-2, a_{-2}=-\frac{1}{j} e^{-j \frac{\pi}{2}}$ and for $k=1, a_{1}=\frac{3}{2} e^{j \frac{\pi}{5}}$ and for $k=-1, a_{-1}=\frac{3}{2} e^{-j \frac{\pi}{5}}$

$$
\begin{aligned}
a_{1} & =\frac{3}{2} e^{j \frac{\pi}{5}} \\
a_{-1} & =\frac{3}{2} e^{-j \frac{\pi}{5}} \\
a_{2} & =\frac{1}{j} e^{\frac{\pi}{2}} \\
a_{-2} & =-\frac{1}{j} e^{-j \frac{\pi}{2}}
\end{aligned}
$$

But $e^{j \frac{\pi}{2}}=j \sin \frac{\pi}{2}=j$ and $e^{-j \frac{\pi}{2}}=-j \sin \frac{\pi}{2}=-j$. Hence the above becomes

$$
\begin{aligned}
a_{1} & =\frac{3}{2} e^{j \frac{\pi}{5}} \\
a_{-1} & =\frac{3}{2} e^{-j \frac{\pi}{5}} \\
a_{2} & =\frac{1}{j} j=1 \\
a_{-2} & =-\frac{1}{j}(-j)=1
\end{aligned}
$$

And $a_{k}=0$ for all other $k$.
Part b For continuos time periodic signal $x(t)$, the Fourier series coeff. $a_{k}$ is given by

$$
\begin{aligned}
x(t) & =\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t} \\
a_{k} & =\frac{1}{T} \int_{T} x(t) e^{-j k \omega_{0} t} d t
\end{aligned}
$$

In this problem

$$
x(t)=e^{j 2 \pi t}+e^{j 3 \pi t}
$$

The period of $e^{j 2 \pi t}$ is 1 and the period of $e^{j 3 \pi t}$ is $\frac{2}{3}$. Hence least common multiplier is $T_{0}=2$ seconds. $\omega_{0}=\frac{2 \pi}{2}=\pi \mathrm{rad} / \mathrm{sec}$. Both of the above terms can now be written

$$
\begin{aligned}
x(t) & =e^{j \frac{4 \pi}{\bar{T}_{0}} t}+e^{j \frac{6 \pi}{T_{0}} t} \\
& =e^{j 2 \omega_{0} t}+e^{j 3 \omega_{0} t}
\end{aligned}
$$

Comparing the above to

$$
x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t}
$$

Shows that for $k=2, a_{k}=1$ and for $k=3, a_{k}=1$ and $a_{k}=0$ for all other $k$.

### 0.4 Problem 4

Given the magnitude and phase profile of this filter, find impulse response.

## solution

We are given $H(\Omega)$ and need to find $h[n]$. i.e. the inverse Fourier transform

$$
\begin{aligned}
h[n] & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} H(\Omega) e^{j \Omega n} d \Omega \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi}|H(\Omega)| e^{j \arg H(\Omega)} e^{j \Omega n} d \Omega
\end{aligned}
$$

But $|H(\Omega)|=1$ and $\arg H(\Omega)=-\Omega$ as given. The above reduces to

$$
\begin{aligned}
h[n] & =\frac{1}{2 \pi} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} e^{-j \Omega} e^{j \Omega n} d \Omega \\
& =\frac{1}{2 \pi} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} e^{-j \Omega(1-n)} d \Omega \\
& =\left(\frac{1}{2 \pi}\right) \frac{1}{-j(1-n)}\left[e^{-j \Omega(1-n)}\right]_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \\
& =\left(\frac{1}{2 \pi}\right) \frac{1}{-j(1-n)}\left(e^{-j \frac{\pi}{4}(1-n)}-e^{j \frac{\pi}{4}(1-n)}\right) \\
& =\frac{1}{\pi} \frac{1}{(1-n)}\left(\frac{e^{j \frac{\pi}{4}(1-n)}-e^{-j \frac{\pi}{4}(1-n)}}{2 j}\right) \\
& =\frac{1}{\pi(1-n)} \sin \left(\frac{\pi}{4}(1-n)\right) \\
& =\frac{-1}{\pi(1-n)} \sin \left(\frac{\pi}{4}(n-1)\right) \\
& =\frac{1}{\pi(n-1)} \sin \left(\frac{\pi}{4}(n-1)\right)
\end{aligned}
$$

