5.8.6 Problems 501 to 569

Table 5.177: Problems not solved by any CAS

#

ODE

Mathematica

Maple

Sympy

15986

\[ {} {\mathrm e}^{y}-2 t y+\left (t \,{\mathrm e}^{y}-t^{2}\right ) y^{\prime } = 0 \]

15990

\[ {} \frac {1}{t^{2}+1}-y^{2}-2 t y y^{\prime } = 0 \]

15991

\[ {} \frac {2 t}{t^{2}+1}+y+\left ({\mathrm e}^{y}+t \right ) y^{\prime } = 0 \]

16133

\[ {} y^{\prime \prime }+b \left (t \right ) y^{\prime }+c \left (t \right ) y = 0 \]

16600

\[ {} y^{\prime } = \sin \left (y\right )-\cos \left (x \right ) \]

16660

\[ {} x^{3} y^{\prime }-\sin \left (y\right ) = 1 \]

17103

\[ {} x^{\prime \prime }-2 {x^{\prime }}^{2}+x^{\prime }-2 x = 0 \]

17105

\[ {} x^{\prime \prime }+{\mathrm e}^{-x^{\prime }}-x = 0 \]

17108

\[ {} x^{\prime \prime }-x^{\prime }+x-x^{2} = 0 \]

17112

\[ {} y^{\prime \prime }+y = 0 \]

17183

\[ {} \left [x^{\prime }\left (t \right ) = \cos \left (x \left (t \right )\right )^{2} \cos \left (y \left (t \right )\right )^{2}+\sin \left (x \left (t \right )\right )^{2} \cos \left (y \left (t \right )\right )^{2}, y^{\prime }\left (t \right ) = -\frac {\sin \left (2 x \left (t \right )\right ) \sin \left (2 y \left (t \right )\right )}{2}\right ] \]

17308

\[ {} y^{\prime } = \sqrt {1-t^{2}-y^{2}} \]

17309

\[ {} y^{\prime } = \frac {\ln \left (t y\right )}{1-t^{2}+y^{2}} \]

17310

\[ {} y^{\prime } = \left (t^{2}+y^{2}\right )^{{3}/{2}} \]

17331

\[ {} {\mathrm e}^{x} \sin \left (y\right )+3 y-\left (3 x -{\mathrm e}^{x} \sin \left (y\right )\right ) y^{\prime } = 0 \]

17347

\[ {} \frac {4 x^{3}}{y^{2}}+\frac {12}{y}+3 \left (\frac {x}{y^{2}}+4 y\right ) y^{\prime } = 0 \]

17465

\[ {} [x^{\prime }\left (t \right ) = 2-y \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )-x \left (t \right )^{2}] \]

17466

\[ {} \left [x^{\prime }\left (t \right ) = x \left (t \right )-x \left (t \right )^{2}-x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = \frac {y \left (t \right )}{2}-\frac {y \left (t \right )^{2}}{4}-\frac {3 x \left (t \right ) y \left (t \right )}{4}\right ] \]

17467

\[ {} [x^{\prime }\left (t \right ) = -\left (x \left (t \right )-y \left (t \right )\right ) \left (1-x \left (t \right )-y \left (t \right )\right ), y^{\prime }\left (t \right ) = x \left (t \right ) \left (y \left (t \right )+2\right )] \]

17468

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right ) \left (2-x \left (t \right )-y \left (t \right )\right ), y^{\prime }\left (t \right ) = -x \left (t \right )-y \left (t \right )-2 x \left (t \right ) y \left (t \right )] \]

17469

\[ {} [x^{\prime }\left (t \right ) = \left (x \left (t \right )+2\right ) \left (-x \left (t \right )+y \left (t \right )\right ), y^{\prime }\left (t \right ) = y \left (t \right )-x \left (t \right )^{2}-y \left (t \right )^{2}] \]

17471

\[ {} \left [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-\frac {x \left (t \right )^{3}}{5}-\frac {y \left (t \right )}{5}\right ] \]

17473

\[ {} \left [x^{\prime }\left (t \right ) = x \left (t \right ) \left (1-x \left (t \right )-y \left (t \right )\right ), y^{\prime }\left (t \right ) = y \left (t \right ) \left (\frac {3}{4}-y \left (t \right )-\frac {x \left (t \right )}{2}\right )\right ] \]

17475

\[ {} y^{\prime \prime }+y^{\prime }+y+y^{3} = 0 \]

17478

\[ {} y^{\prime \prime }+\mu \left (1-y^{2}\right ) y^{\prime }+y = 0 \]

17489

\[ {} y^{\prime \prime }+\cos \left (t \right ) y^{\prime }+3 \ln \left (t \right ) y = 0 \]

17490

\[ {} \left (x +3\right ) y^{\prime \prime }+x y^{\prime }+y \ln \left (x \right ) = 0 \]

17491

\[ {} \left (x -2\right ) y^{\prime \prime }+y^{\prime }+\left (x -2\right ) \tan \left (x \right ) y = 0 \]

17614

\[ {} y^{\prime \prime }+y+\frac {y^{3}}{5} = \cos \left (w t \right ) \]

17615

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{5}+y+\frac {y^{3}}{5} = \cos \left (w t \right ) \]

17724

\[ {} t y^{\prime \prime \prime }+\sin \left (t \right ) y^{\prime \prime }+8 y = \cos \left (t \right ) \]

17725

\[ {} t \left (t -1\right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+4 t^{2} y = 0 \]

17726

\[ {} y^{\prime \prime \prime }+t y^{\prime \prime }+t^{2} y^{\prime }+t^{2} y = \ln \left (t \right ) \]

17727

\[ {} \left (-4+x \right ) y^{\prime \prime \prime \prime }+\left (1+x \right ) y^{\prime \prime }+y \tan \left (x \right ) = 0 \]

17728

\[ {} \left (x^{2}-2\right ) y^{\left (6\right )}+x^{2} y^{\prime \prime }+3 y = 0 \]

17730

\[ {} t y^{\prime \prime \prime }+\sin \left (t \right ) y^{\prime \prime }+4 y = \cos \left (t \right ) \]

17731

\[ {} t \left (t -1\right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+7 t^{2} y = 0 \]

17732

\[ {} y^{\prime \prime \prime }+t y^{\prime \prime }+5 t^{2} y^{\prime }+2 t^{3} y = \ln \left (t \right ) \]

17733

\[ {} \left (x -1\right ) y^{\prime \prime \prime \prime }+\left (x +5\right ) y^{\prime \prime }+y \tan \left (x \right ) = 0 \]

17734

\[ {} \left (x^{2}-25\right ) y^{\left (6\right )}+x^{2} y^{\prime \prime }+5 y = 0 \]

17896

\[ {} y = {y^{\prime }}^{2}-x y^{\prime }+\frac {x^{3}}{2} \]

17911

\[ {} y^{\prime \prime } y^{\prime }-x^{2} y y^{\prime }-x y^{2} = 0 \]

17912

\[ {} x \left (y^{\prime } x^{2}+2 x y\right ) y^{\prime \prime }+4 {y^{\prime }}^{2} x +8 x y y^{\prime }+4 y^{2}-1 = 0 \]

17972

\[ {} y^{\prime \prime } = x +y^{2} \]

17973

\[ {} y^{\prime \prime }+2 y^{\prime }+y^{2} = 0 \]

18151

\[ {} \left (y-x^{2}+x \,{\mathrm e}^{y}\right ) y^{\prime \prime } = 2 x y-{\mathrm e}^{y}-x \]

18416

\[ {} x^{\prime \prime }+\left (5 x^{4}-9 x^{2}\right ) x^{\prime }+x^{5} = 0 \]

18465

\[ {} v^{\prime \prime } = \left (\frac {1}{v}+{v^{\prime }}^{4}\right )^{{1}/{3}} \]

18467

\[ {} \sqrt {y^{\prime }+y} = \left (y^{\prime \prime }+2 x \right )^{{1}/{4}} \]

18542

\[ {} \left (1+y^{2}\right ) y^{\prime \prime }-2 y {y^{\prime }}^{2}-2 \left (1+y^{2}\right ) y^{\prime } = y^{2} \left (1+y^{2}\right ) \]

18881

\[ {} y^{\prime \prime } y^{\prime }-x^{2} y y^{\prime } = x y^{2} \]

18911

\[ {} \left (y^{2}+2 y^{\prime } x^{2}\right ) y^{\prime \prime }+2 {y^{\prime }}^{2} \left (x +y\right )+x y^{\prime }+y = 0 \]

18913

\[ {} \left (x^{3}+x +1\right ) y^{\prime \prime \prime }+\left (6 x +3\right ) y^{\prime \prime }+6 y = 0 \]

18938

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x^{{1}/{3}}}+\left (\frac {1}{4 x^{{2}/{3}}}-\frac {1}{6 x^{{1}/{3}}}-\frac {6}{x^{2}}\right ) y = 0 \]

19041

\[ {} y^{\prime }+\frac {y \ln \left (y\right )}{x} = \frac {y}{x^{2}}-\ln \left (y\right )^{2} \]

19237

\[ {} x y {y^{\prime }}^{2}+\left (x^{2}+y^{2}-h^{2}\right ) y^{\prime }-x y = 0 \]

19240

\[ {} \left (y^{\prime } x^{2}+y^{2}\right ) \left (x y^{\prime }+y\right ) = \left (y^{\prime }+1\right )^{2} \]

19290

\[ {} x^{5} y^{\left (6\right )}+x^{4} y^{\left (5\right )}+x y^{\prime }+y = \ln \left (x \right ) \]

19294

\[ {} y^{2}+\left (2 x y-1\right ) y^{\prime }+x y^{\prime \prime }+x^{2} y^{\prime \prime \prime } = 0 \]

19346

\[ {} x^{2} y^{\prime \prime } = \sqrt {m \,x^{2} {y^{\prime }}^{3}+y^{2} n} \]

19349

\[ {} x^{2} y^{\prime \prime }+4 y^{2}-6 y = x^{4} {y^{\prime }}^{2} \]

19380

\[ {} 4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{3}+6 x^{2}+4\right ) y = 0 \]

19454

\[ {} \left (x y \sin \left (x y\right )+\cos \left (x y\right )\right ) y+\left (x y \sin \left (x y\right )-\cos \left (x y\right )\right ) y^{\prime } = 0 \]

19456

\[ {} 3 x^{2} y^{4}+2 x y+\left (2 x^{3} y^{2}-x^{2}\right ) y^{\prime } = 0 \]

19491

\[ {} 3 y {y^{\prime }}^{2}-2 x y y^{\prime }+4 y^{2}-x^{2} = 0 \]

19529

\[ {} y+3 x y^{\prime }+2 y {y^{\prime }}^{2}+\left (x^{2}+2 y^{2} y^{\prime }\right ) y^{\prime \prime } = 0 \]

19530

\[ {} \left (y^{2}+2 y^{\prime } x^{2}\right ) y^{\prime \prime }+2 {y^{\prime }}^{2} \left (x +y\right )+x y^{\prime }+y = 0 \]

19538

\[ {} y^{\prime }-y y^{\prime \prime } = n \sqrt {{y^{\prime }}^{2}+a^{2} y^{\prime \prime }} \]

19542

\[ {} x y^{\prime \prime }+2 y^{\prime } = -y^{2}+y^{\prime } x^{2} \]