74.6.38 problem 39

Internal problem ID [15990]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 2. First Order Equations. Exercises 2.4, page 57
Problem number : 39
Date solved : Monday, March 31, 2025 at 02:22:51 PM
CAS classification : [_exact, _rational, _Bernoulli]

\begin{align*} \frac {1}{t^{2}+1}-y^{2}-2 t y y^{\prime }&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \end{align*}

Maple
ode:=1/(t^2+1)-y(t)^2-2*t*y(t)*diff(y(t),t) = 0; 
ic:=y(0) = 0; 
dsolve([ode,ic],y(t), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=(1/(1+t^2)-y[t]^2)-(2*t*y[t])*D[y[t],t]==0; 
ic={y[0]==0}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-2*t*y(t)*Derivative(y(t), t) - y(t)**2 + 1/(t**2 + 1),0) 
ics = {y(0): 0} 
dsolve(ode,func=y(t),ics=ics)