76.24.5 problem 5

Internal problem ID [17733]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 6. Systems of First Order Linear Equations. Section 6.2 (Basic Theory of First Order Linear Systems). Problems at page 398
Problem number : 5
Date solved : Monday, March 31, 2025 at 04:26:11 PM
CAS classification : [[_high_order, _with_linear_symmetries]]

\begin{align*} \left (x -1\right ) y^{\prime \prime \prime \prime }+\left (x +5\right ) y^{\prime \prime }+\tan \left (x \right ) y&=0 \end{align*}

Maple
ode:=(x-1)*diff(diff(diff(diff(y(x),x),x),x),x)+(x+5)*diff(diff(y(x),x),x)+tan(x)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=(x-1)*D[y[x],{x,4}]+(x+5)*D[y[x],{x,2}]+Tan[x]*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((x - 1)*Derivative(y(x), (x, 4)) + (x + 5)*Derivative(y(x), (x, 2)) + y(x)*tan(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : solve: Cannot solve (x - 1)*Derivative(y(x), (x, 4)) + (x + 5)*Derivative(y(x), (x, 2)) + y(x)*tan(x)