|
# |
ODE |
Mathematica |
Maple |
Sympy |
|
\[
{} \left (-1+y^{2}\right ) \left (a^{2} y^{2}-1\right ) y^{\prime \prime }+b \sqrt {\left (1-y^{2}\right ) \left (1-a^{2} y^{2}\right )}\, {y^{\prime }}^{2}+\left (1+a^{2}-2 a^{2} y^{2}\right ) y {y^{\prime }}^{2} = 0
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} \left (y^{2}-x^{2} {y^{\prime }}^{2}+x^{2} y y^{\prime \prime }\right )^{2}-4 x y \left (x y^{\prime }-y\right )^{3} = 0
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} \left (2 y y^{\prime \prime }-{y^{\prime }}^{2}\right )^{3}+32 y^{\prime \prime } \left (x y^{\prime \prime }-y^{\prime }\right )^{3} = 0
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = a \,x^{n} y^{2}-a \,x^{n} \left (b \,x^{m}+c \right ) y+b m \,x^{m -1}
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = b \,{\mathrm e}^{x \mu } y^{2}+a \lambda \,{\mathrm e}^{\lambda x}-a^{2} b \,{\mathrm e}^{\left (\mu +2 \lambda \right ) x}
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = a \,{\mathrm e}^{k x} y^{2}+b y+c \,{\mathrm e}^{k n x}+d \,{\mathrm e}^{k \left (2 n +1\right ) x}
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = a \,x^{n} y^{2}-a b \,x^{n} {\mathrm e}^{\lambda x} y+b \lambda \,{\mathrm e}^{\lambda x}
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = \lambda \sin \left (\lambda x \right ) y^{2}+a \cos \left (\lambda x \right )^{n} y-a \cos \left (\lambda x \right )^{n -1}
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = f \left (x \right ) y^{2}-a \,{\mathrm e}^{\lambda x} f \left (x \right ) y+a \lambda \,{\mathrm e}^{\lambda x}
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} \left (a \,x^{3}+b \,x^{2}+c x \right ) y^{\prime \prime }+\left (n \,x^{2}+m x +k \right ) y^{\prime }+\left (k -1\right ) \left (\left (-a k +n \right ) x +m -b k \right ) y = 0
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} \left (a \,x^{3}+b \,x^{2}+c x \right ) y^{\prime \prime }+\left (\left (m -a \right ) x^{2}+\left (2 c m -1\right ) x -c \right ) y^{\prime }+\left (-2 m x +1\right ) y = 0
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} \left (a \,x^{3}+b \,x^{2}+c x \right ) y^{\prime \prime }+\left (n \,x^{2}+m x +k \right ) y^{\prime }+\left (-2 \left (a +n \right ) x +1\right ) y = 0
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} x \left (a \,x^{2}+b x +1\right ) y^{\prime \prime }+\left (\alpha \,x^{2}+\beta x +\gamma \right ) y^{\prime }+\left (n x +m \right ) y = 0
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} y^{\prime \prime }+2 k \,{\mathrm e}^{x \mu } y^{\prime }+\left (a \,{\mathrm e}^{2 \lambda x}+b \,{\mathrm e}^{\lambda x}+k^{2} {\mathrm e}^{2 x \mu }+k \mu \,{\mathrm e}^{x \mu }+c \right ) y = 0
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} y^{\prime \prime }+\left (a +b \,{\mathrm e}^{2 \lambda x}\right ) y^{\prime }+\lambda \left (a -\lambda -b \,{\mathrm e}^{2 \lambda x}\right ) y = 0
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} y^{\prime \prime }+\left (2 \,{\mathrm e}^{\lambda x} a -\lambda \right ) y^{\prime }+\left (a^{2} {\mathrm e}^{2 \lambda x}+c \,{\mathrm e}^{x \mu }\right ) y = 0
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} y^{\prime \prime }+\left (2 \,{\mathrm e}^{\lambda x} a -\lambda \right ) y^{\prime }+\left (a^{2} {\mathrm e}^{2 \lambda x}+b \,{\mathrm e}^{2 x \mu }+c \,{\mathrm e}^{x \mu }+k \right ) y = 0
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} y^{\prime \prime }+\left (2 \,{\mathrm e}^{\lambda x} a +b -\lambda \right ) y^{\prime }+\left (a^{2} {\mathrm e}^{2 \lambda x}+a b \,{\mathrm e}^{\lambda x}+c \,{\mathrm e}^{2 x \mu }+d \,{\mathrm e}^{x \mu }+k \right ) y = 0
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} \left (x y^{\prime }-y\right ) \left (y y^{\prime }+x \right ) = a^{2} y^{\prime }
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} \left (x^{4}-2 x^{3}+x^{2}\right ) y^{\prime \prime }+2 \left (x -1\right ) y^{\prime }+x^{2} y = 0
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} \left (x^{5}+x^{4}-6 x^{3}\right ) y^{\prime \prime }+y^{\prime } x^{2}+\left (x -2\right ) y = 0
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} x^{\prime } = -x \left (k^{2}+x^{2}\right )
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = t \ln \left (y^{2 t}\right )+t^{2}
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} x^{3} y^{\prime \prime }+y^{\prime } x^{2}+y = 0
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} x^{2} y^{\prime \prime }+y^{\prime }-2 y = 0
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} x y \left (1-{y^{\prime }}^{2}\right ) = \left (x^{2}-y^{2}-a^{2}\right ) y^{\prime }
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} x \left (1+x \right ) y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}+5 y = 0
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} y^{3} y^{\prime \prime } = -1
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} y^{\prime \prime }-\frac {t}{y} = \frac {1}{\pi }
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} y^{\prime \prime }-x y^{\prime \prime \prime }+{y^{\prime \prime \prime }}^{3} = 0
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} a^{2} y^{\prime \prime } = 2 x \sqrt {1+{y^{\prime }}^{2}}
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} \sin \left (x \right ) \tan \left (y\right )+1+\cos \left (x \right ) \sec \left (y\right )^{2} y^{\prime } = 0
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} y^{\prime } x^{2} = y
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} x^{3} \left (x -1\right ) y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+3 x y = 0
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} x^{2} y^{\prime \prime }+\left (2-x \right ) y^{\prime } = 0
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} x^{4} y^{\prime \prime }+y \sin \left (x \right ) = 0
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}-\frac {y}{x^{3}} = 0
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} y^{\prime \prime }+\frac {n y^{\prime }}{x^{2}}+\frac {q y}{x^{3}} = 0
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} 4 {y^{\prime }}^{3} y-2 x^{2} {y^{\prime }}^{2}+4 x y y^{\prime }+x^{3} = 16 y^{2}
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} \left (x y^{\prime }-y\right ) \left (y y^{\prime }+x \right ) = h^{2} y^{\prime }
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} \left (x y^{\prime }-y\right ) \left (x -y y^{\prime }\right ) = 2 y^{\prime }
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} x^{4} y^{\prime \prime }+x y^{\prime }+y = \frac {1}{x}
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} \sec \left (y\right )^{2} y^{\prime }+2 x \tan \left (y\right ) = x^{3}
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} \left (a {y^{\prime }}^{2}-b \right ) x y+\left (b \,x^{2}-a y^{2}+c \right ) y^{\prime } = 0
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} \left (x y^{\prime }-y\right ) \left (y y^{\prime }+x \right ) = h^{2} y^{\prime }
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} a x y {y^{\prime }}^{2}+\left (x^{2}-a y^{2}-b \right ) y^{\prime }-x y = 0
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} \left (x y^{\prime }-y\right ) \left (x -y y^{\prime }\right ) = 2 y^{\prime }
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} \left (2 x^{2}+1\right ) {y^{\prime }}^{2}+\left (x^{2}+2 x y+y^{2}+2\right ) y^{\prime }+2 y^{2}+1 = 0
\]
|
✓ |
✗ |
✗ |
|