Internal
problem
ID
[12620]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.2-6
Problem
number
:
199
Date
solved
:
Monday, March 31, 2025 at 05:54:33 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(a*x^3+b*x^2+c*x)*diff(diff(y(x),x),x)+((m-a)*x^2+(2*c*m-1)*x-c)*diff(y(x),x)+(-2*m*x+1)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(a*x^3+b*x^2+c*x)*D[y[x],{x,2}]+((m-a)*x^2+(2*c*m-1)*x-c)*D[y[x],x]+(-2*m*x+1)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") m = symbols("m") y = Function("y") ode = Eq((-2*m*x + 1)*y(x) + (-c + x**2*(-a + m) + x*(2*c*m - 1))*Derivative(y(x), x) + (a*x**3 + b*x**2 + c*x)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False