Internal
problem
ID
[12714]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.3-1.
Equations
with
exponential
functions
Problem
number
:
29
Date
solved
:
Monday, March 31, 2025 at 06:52:15 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)+(2*exp(lambda*x)*a+b-lambda)*diff(y(x),x)+(exp(2*lambda*x)*a^2+a*b*exp(lambda*x)+c*exp(2*x*mu)+d*exp(x*mu)+k)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+(2*a*Exp[\[Lambda]*x]+b-\[Lambda])*D[y[x],x]+( a^2*Exp[2*\[Lambda]*x] + a*b*Exp[\[Lambda]*x] + c*Exp[2*\[Mu]*x] + d*Exp[\[Mu]*x]+k )*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") d = symbols("d") k = symbols("k") lambda_ = symbols("lambda_") mu = symbols("mu") y = Function("y") ode = Eq((2*a*exp(lambda_*x) + b - lambda_)*Derivative(y(x), x) + (a**2*exp(2*lambda_*x) + a*b*exp(lambda_*x) + c*exp(2*mu*x) + d*exp(mu*x) + k)*y(x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False