78.19.3 problem 1 (c)

Internal problem ID [18351]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 5. Power Series Solutions and Special Functions. Section 29. Regular singular Points. Problems at page 227
Problem number : 1 (c)
Date solved : Monday, March 31, 2025 at 05:26:10 PM
CAS classification : [[_2nd_order, _missing_y]]

\begin{align*} x^{2} y^{\prime \prime }+\left (2-x \right ) y^{\prime }&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple
Order:=6; 
ode:=x^2*diff(diff(y(x),x),x)+(2-x)*diff(y(x),x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ \text {No solution found} \]
Mathematica. Time used: 0.021 (sec). Leaf size: 52
ode=x^2*D[y[x],{x,2}]+(2-x)*D[y[x],x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_2 e^{2/x} \left (\frac {315 x^5}{4}+\frac {45 x^4}{2}+\frac {15 x^3}{2}+3 x^2+\frac {3 x}{2}+1\right ) x^3+c_1 \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + (2 - x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
ValueError : ODE x**2*Derivative(y(x), (x, 2)) + (2 - x)*Derivative(y(x), x) does not match hint 2nd_power_series_regular