Internal
problem
ID
[13509]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
6,
Series
solutions
of
linear
differential
equations.
Section
6.2
(Frobenius).
Exercises
page
251
Problem
number
:
3
Date
solved
:
Monday, March 31, 2025 at 07:59:58 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=(x^4-2*x^3+x^2)*diff(diff(y(x),x),x)+2*(x-1)*diff(y(x),x)+x^2*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=(x^4-2*x^3+x^2)*D[y[x],{x,2}]+2*(x-1)*D[y[x],x]+x^2*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*y(x) + (2*x - 2)*Derivative(y(x), x) + (x**4 - 2*x**3 + x**2)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
ValueError : ODE x**2*y(x) + (2*x - 2)*Derivative(y(x), x) + (x**4 - 2*x**3 + x**2)*Derivative(y(x), (x, 2)) does not match hint 2nd_power_series_regular