Internal
problem
ID
[12624]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.2-6
Problem
number
:
203
Date
solved
:
Monday, March 31, 2025 at 06:09:29 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x*(a*x^2+b*x+1)*diff(diff(y(x),x),x)+(alpha*x^2+beta*x+gamma)*diff(y(x),x)+(n*x+m)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x*(a*x^2+b*x+1)*D[y[x],{x,2}]+(\[Alpha]*x^2+\[Beta]*x+\[Gamma])*D[y[x],x]+(n*x+m)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") Alpha = symbols("Alpha") BETA = symbols("BETA") Gamma = symbols("Gamma") a = symbols("a") b = symbols("b") m = symbols("m") n = symbols("n") y = Function("y") ode = Eq(x*(a*x**2 + b*x + 1)*Derivative(y(x), (x, 2)) + (m + n*x)*y(x) + (Alpha*x**2 + BETA*x + Gamma)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
ValueError : Expected Expr or iterable but got None