| # | ODE | Mathematica | Maple | Sympy |
| \[
{} x^{\prime \prime }-x+3 x^{2} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime }-x+3 x^{2} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} t^{2} x^{\prime \prime }+t x^{\prime }+x t^{2} = 0
\]
|
✗ |
✗ |
✓ |
|
| \[
{} t^{2} x^{\prime \prime }+t x^{\prime }+\left (t^{2}-1\right ) x = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} t^{2} x^{\prime \prime }+t x^{\prime }+\left (-m^{2}+t^{2}\right ) x = 0
\]
|
✓ |
✗ |
✓ |
|
| \[
{} s y^{\prime \prime }+\lambda y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} t^{2} x^{\prime \prime }+t x^{\prime }+x t^{2} = \lambda x
\]
|
✓ |
✗ |
✓ |
|
| \[
{} x^{\prime \prime }-2 x^{\prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+2 x^{\prime }-x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+2 x^{\prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+2 h x^{\prime }+k^{2} x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-x^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime }+4 x^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime }+6 x^{5} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime }+\lambda x-x^{3} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime }+4 x^{3} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime }+4 x^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -x^{\prime \prime }+x = {\mathrm e}^{-x}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} -x^{\prime \prime }+x = {\mathrm e}^{-x^{2}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} -x^{\prime \prime } = \frac {1}{\sqrt {1+x^{2}}}-x
\]
|
✗ |
✗ |
✗ |
|
| \[
{} -x^{\prime \prime } = 2 x-x^{2}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} -x^{\prime \prime } = \arctan \left (x\right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x u^{\prime \prime }-\left (x^{2} {\mathrm e}^{x}+1\right ) u^{\prime }-x^{2} {\mathrm e}^{x} u = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} u^{\prime \prime }-\left (1+x \right ) u^{\prime }+\left (x -1\right ) u = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} u^{\prime \prime }+\left (\tan \left (x \right )-2 \cos \left (x \right )\right ) u^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-3 y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-4 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-5 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+5 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 5 y+4 y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-3 y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-6 y^{\prime }+9 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+10 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }-6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+16 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-6 y^{\prime }+25 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-\frac {6 y^{\prime }}{5}+\frac {9 y}{25} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+k^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 s y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime \prime }+5 y^{\prime }-12 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} u^{\prime \prime }-3 u^{\prime } x +13 u = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+\left (1-\frac {2}{\left (3 x +1\right )^{2}}\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} u^{\prime \prime }-3 u^{\prime } x +13 u = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sin \left (x \right )^{2} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }-k^{2} \cos \left (x \right )^{2} y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} \cos \left (x \right ) y^{\prime \prime }+\left (x \sin \left (x \right )-2 \cos \left (x \right )\right ) \left (x y^{\prime }-y\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }+\left (x +3\right ) y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+7 x y^{\prime }+8 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} n \left (n +1\right ) y-2 x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} m y^{\prime \prime }+a y^{\prime }+k y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\omega ^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }-3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }-3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } \cos \left (y\right )+\left (\cos \left (y\right )-y^{\prime } \sin \left (y\right )\right ) y^{\prime }-2 x y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x y^{\prime \prime }-{y^{\prime }}^{3}-y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x y^{\prime \prime }+{y^{\prime \prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y y^{\prime \prime } = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = {\mathrm e}^{y} y^{\prime }
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-\frac {2 {y^{\prime }}^{2}}{y}-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime } = 4 x^{3}-4 x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime }+\sin \left (x\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-12 y^{\prime }+35 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 9 y^{\prime \prime }-30 y^{\prime }+25 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y^{\prime \prime }-4 y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+5 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+n^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+6 y^{\prime }+9 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} k^{2} y^{\prime \prime }+2 k y^{\prime }+\left (k^{2}+1\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+2 x^{\prime }+2 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }+13 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+5 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime \prime }}^{2}-3 y y^{\prime }+x y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} {r^{\prime \prime }}^{2}+r^{\prime \prime }+y r^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y+2 y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|