Internal
problem
ID
[21394]
Book
:
A
Textbook
on
Ordinary
Differential
Equations
by
Shair
Ahmad
and
Antonio
Ambrosetti.
Second
edition.
ISBN
978-3-319-16407-6.
Springer
2015
Section
:
Chapter
9.
Solutions
by
infinite
series
and
Bessel
functions.
Excercise
10.6
at
page
223
Problem
number
:
20
Date
solved
:
Thursday, October 02, 2025 at 07:30:45 PM
CAS
classification
:
[[_Emden, _Fowler]]
With initial conditions
ode:=s*diff(diff(y(s),s),s)+lambda*y(s) = 0; ic:=[y(0) = 0, y(1) = 0]; dsolve([ode,op(ic)],y(s), singsol=all);
ode=s*D[y[s],{s,2}]+\[Lambda]*y[s]==0; ic={y[0] ==0,y[1]==0}; DSolve[{ode,ic},y[s],s,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") m = symbols("m") x = Function("x") ode = Eq(t**2*Derivative(x(t), (t, 2)) + t*Derivative(x(t), t) + (-m**2 + t**2)*x(t),0) ics = {x(0): 0} dsolve(ode,func=x(t),ics=ics)
Timed Out