Internal
problem
ID
[21575]
Book
:
The
Differential
Equations
Problem
Solver.
VOL.
I.
M.
Fogiel
director.
REA,
NY.
1978.
ISBN
78-63609
Section
:
Chapter
8.
Riccati
Equation.
Page
124.
Problem
number
:
8-1
Date
solved
:
Thursday, October 02, 2025 at 07:50:04 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
ode:=x*diff(diff(u(x),x),x)-(x^2*exp(x)+1)*diff(u(x),x)-x^2*exp(x)*u(x) = 0; dsolve(ode,u(x), singsol=all);
ode=x*D[u[x],{x,2}]-(x^2*Exp[x]+1)*D[u[x],x]-x^2*Exp[x]*u[x]==0; ic={}; DSolve[{ode,ic},u[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") u = Function("u") ode = Eq(-x**2*u(x)*exp(x) + x*Derivative(u(x), (x, 2)) - (x**2*exp(x) + 1)*Derivative(u(x), x),0) ics = {} dsolve(ode,func=u(x),ics=ics)
False