Internal
problem
ID
[21437]
Book
:
A
Textbook
on
Ordinary
Differential
Equations
by
Shair
Ahmad
and
Antonio
Ambrosetti.
Second
edition.
ISBN
978-3-319-16407-6.
Springer
2015
Section
:
Chapter
13.
Boundary
value
problems.
Excercise
13.5
at
page
291
Problem
number
:
5
Date
solved
:
Friday, October 03, 2025 at 07:51:57 AM
CAS
classification
:
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]
With initial conditions
ode:=diff(diff(x(t),t),t)+lambda*x(t)-x(t)^3 = 0; ic:=[x(0) = 0, x(1) = 0]; dsolve([ode,op(ic)],x(t), singsol=all);
ode=D[x[t],{t,2}]+\[Lambda]*x[t]-x[t]^3==0; ic={x[0]==0,x[1]==0}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
{}
from sympy import * t = symbols("t") lambda_ = symbols("lambda_") x = Function("x") ode = Eq(lambda_*x(t) - x(t)**3 + Derivative(x(t), (t, 2)),0) ics = {x(0): 0, x(1): 0} dsolve(ode,func=x(t),ics=ics)
Timed Out