Internal
problem
ID
[21391]
Book
:
A
Textbook
on
Ordinary
Differential
Equations
by
Shair
Ahmad
and
Antonio
Ambrosetti.
Second
edition.
ISBN
978-3-319-16407-6.
Springer
2015
Section
:
Chapter
9.
Solutions
by
infinite
series
and
Bessel
functions.
Excercise
10.6
at
page
223
Problem
number
:
9
Date
solved
:
Thursday, October 02, 2025 at 07:30:43 PM
CAS
classification
:
[_Lienard]
With initial conditions
ode:=t^2*diff(diff(x(t),t),t)+t*diff(x(t),t)+t^2*x(t) = 0; ic:=[D(x)(0) = a]; dsolve([ode,op(ic)],x(t), singsol=all);
ode=t^2*D[x[t],{t,2}]+t*D[x[t],t]+t^2*x[t]==0; ic={Derivative[1][x][0] ==a}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
{}
from sympy import * t = symbols("t") a = symbols("a") x = Function("x") ode = Eq(t**2*x(t) + t**2*Derivative(x(t), (t, 2)) + t*Derivative(x(t), t),0) ics = {Subs(Derivative(x(t), t), t, 0): a} dsolve(ode,func=x(t),ics=ics)