Internal
problem
ID
[21435]
Book
:
A
Textbook
on
Ordinary
Differential
Equations
by
Shair
Ahmad
and
Antonio
Ambrosetti.
Second
edition.
ISBN
978-3-319-16407-6.
Springer
2015
Section
:
Chapter
13.
Boundary
value
problems.
Excercise
13.5
at
page
291
Problem
number
:
2
Date
solved
:
Thursday, October 02, 2025 at 07:31:32 PM
CAS
classification
:
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]
With initial conditions
ode:=diff(diff(x(t),t),t)+4*x(t)^3 = 0; ic:=[x(a) = 0, x(b) = 0]; dsolve([ode,op(ic)],x(t), singsol=all);
ode=D[x[t],{t,2}]+4*x[t]^3==0; ic={x[a]==0,x[b]==0}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") a = symbols("a") b = symbols("b") x = Function("x") ode = Eq(4*x(t)**3 + Derivative(x(t), (t, 2)),0) ics = {x(a): 0, x(b): 0} dsolve(ode,func=x(t),ics=ics)