80.12.2 problem 2

Internal problem ID [21435]
Book : A Textbook on Ordinary Differential Equations by Shair Ahmad and Antonio Ambrosetti. Second edition. ISBN 978-3-319-16407-6. Springer 2015
Section : Chapter 13. Boundary value problems. Excercise 13.5 at page 291
Problem number : 2
Date solved : Thursday, October 02, 2025 at 07:31:32 PM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

\begin{align*} x^{\prime \prime }+4 x^{3}&=0 \end{align*}

With initial conditions

\begin{align*} x \left (a \right )&=0 \\ x \left (b \right )&=0 \\ \end{align*}
Maple. Time used: 0.038 (sec). Leaf size: 5
ode:=diff(diff(x(t),t),t)+4*x(t)^3 = 0; 
ic:=[x(a) = 0, x(b) = 0]; 
dsolve([ode,op(ic)],x(t), singsol=all);
 
\[ x = 0 \]
Mathematica. Time used: 12.103 (sec). Leaf size: 6
ode=D[x[t],{t,2}]+4*x[t]^3==0; 
ic={x[a]==0,x[b]==0}; 
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to 0 \end{align*}
Sympy
from sympy import * 
t = symbols("t") 
a = symbols("a") 
b = symbols("b") 
x = Function("x") 
ode = Eq(4*x(t)**3 + Derivative(x(t), (t, 2)),0) 
ics = {x(a): 0, x(b): 0} 
dsolve(ode,func=x(t),ics=ics)