81.9.4 problem 13-11

Internal problem ID [21593]
Book : The Differential Equations Problem Solver. VOL. I. M. Fogiel director. REA, NY. 1978. ISBN 78-63609
Section : Chapter 13. The Wronskian and linear independence. Page 283.
Problem number : 13-11
Date solved : Thursday, October 02, 2025 at 07:58:47 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }-y&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 15
ode:=diff(diff(y(x),x),x)-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \,{\mathrm e}^{-x}+c_2 \,{\mathrm e}^{x} \]
Mathematica. Time used: 0.008 (sec). Leaf size: 20
ode=D[y[x],{x,2}]-y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 e^x+c_2 e^{-x} \end{align*}
Sympy. Time used: 0.024 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- x} + C_{2} e^{x} \]