4.4.10 Problems 901 to 1000

Table 4.563: Second ODE homogeneous ODE

#

ODE

Mathematica

Maple

Sympy

6236

\[ {} -6 x y+2 y^{\prime }+x \left (3 x^{2}+1\right ) y^{\prime \prime } = 0 \]

6237

\[ {} \left (3 x +1\right ) y-4 x^{2} y^{\prime }+4 x^{2} \left (1+x \right ) y^{\prime \prime } = 0 \]

6238

\[ {} 2 \left (b x +3 a \right ) y-2 x \left (b x +2 a \right ) y^{\prime }+x^{2} \left (b x +a \right ) y^{\prime \prime } = 0 \]

6239

\[ {} \left (b x +a \right ) y+2 \left (1-3 x \right ) \left (1-x \right ) y^{\prime }+4 \left (1-x \right ) x y^{\prime \prime } = 0 \]

6240

\[ {} \left (\operatorname {b1} \,x^{2}+\operatorname {b0} \right ) y+\left (\operatorname {a2} \,x^{2}+\operatorname {a1} x +\operatorname {a0} \right ) y^{\prime }+4 \left (1-x \right ) x \left (-a x +1\right ) y^{\prime \prime } = 0 \]

6241

\[ {} a^{2} y+x^{4} y^{\prime \prime } = 0 \]

6242

\[ {} \left (-2 x^{2}+1\right ) y+x^{4} y^{\prime \prime } = 0 \]

6243

\[ {} -\left (2 x^{2}+1\right ) y+x^{4} y^{\prime \prime } = 0 \]

6244

\[ {} \left (-a^{2}+{\mathrm e}^{\frac {2}{x}}\right ) y+x^{4} y^{\prime \prime } = 0 \]

6245

\[ {} -2 y+x y^{\prime }+x^{4} y^{\prime \prime } = 0 \]

6246

\[ {} \left (2 x +1\right ) y-2 x^{2} y^{\prime }+x^{4} y^{\prime \prime } = 0 \]

6247

\[ {} y+x^{3} y^{\prime }+x^{4} y^{\prime \prime } = 0 \]

6248

\[ {} -\left (1+x \right ) y+x^{3} y^{\prime }+x^{4} y^{\prime \prime } = 0 \]

6249

\[ {} \left (c \,x^{4}+b \,x^{2}+a \right ) y+x^{3} y^{\prime }+x^{4} y^{\prime \prime } = 0 \]

6250

\[ {} y+x \left (x^{2}+1\right ) y^{\prime }+x^{4} y^{\prime \prime } = 0 \]

6251

\[ {} \left (-x^{2}+1\right ) y-x \left (-x^{2}+1\right ) y^{\prime }+x^{4} y^{\prime \prime } = 0 \]

6252

\[ {} a^{2} y+2 x^{3} y^{\prime }+x^{4} y^{\prime \prime } = 0 \]

6253

\[ {} -y+x \left (2 x^{2}+1\right ) y^{\prime }+x^{4} y^{\prime \prime } = 0 \]

6254

\[ {} b y+2 x^{2} \left (x +a \right ) y^{\prime }+x^{4} y^{\prime \prime } = 0 \]

6255

\[ {} -x^{2} y-\left (-x^{3}+1\right ) y^{\prime }+x \left (x^{3}+1\right ) y^{\prime \prime } = 0 \]

6256

\[ {} -2 y-x^{3} y^{\prime }+x^{2} \left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

6257

\[ {} \left (-x^{2}+2\right ) y-x \left (-x^{2}+2\right ) y^{\prime }+x^{2} \left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

6258

\[ {} a \left (a +1\right ) y-2 x^{3} y^{\prime }+x^{2} \left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

6259

\[ {} y+2 x \left (x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime } = 0 \]

6260

\[ {} 4 y+2 x \left (x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime } = 0 \]

6261

\[ {} -a^{2} y-2 x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime } = 0 \]

6262

\[ {} -\left (m^{2}-n \left (n +1\right ) \left (-x^{2}+1\right )\right ) y-2 x \left (-x^{2}+1\right ) y^{\prime }+\left (-x^{2}+1\right )^{2} y^{\prime \prime } = 0 \]

6263

\[ {} -\left (k^{2}-p \left (p +1\right ) \left (-x^{2}+1\right )\right ) y-2 x \left (-x^{2}+1\right ) y^{\prime }+\left (-x^{2}+1\right )^{2} y^{\prime \prime } = 0 \]

6264

\[ {} -\left (a^{2}-k \left (-x^{2}+1\right )\right ) y-2 x \left (-x^{2}+1\right ) y^{\prime }+\left (-x^{2}+1\right )^{2} y^{\prime \prime } = 0 \]

6265

\[ {} \left (\operatorname {a4} \,x^{4}+\operatorname {a2} \,x^{2}+\operatorname {a0} \right ) y-2 x \left (-x^{2}+1\right ) y^{\prime }+\left (-x^{2}+1\right )^{2} y^{\prime \prime } = 0 \]

6266

\[ {} b y+a x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime } = 0 \]

6267

\[ {} \left (\operatorname {c2} \,x^{2}+\operatorname {b2} x +\operatorname {a2} \right ) y+\operatorname {a1} x \left (-x^{2}+1\right ) y^{\prime }+\left (-x^{2}+1\right )^{2} y^{\prime \prime } = 0 \]

6268

\[ {} y b^{2}+x \left (a^{2}+2 x^{2}\right ) y^{\prime }+x^{2} \left (a^{2}+x^{2}\right )^{2} y^{\prime \prime } = 0 \]

6269

\[ {} -\left (\operatorname {a4} \,x^{4}+\operatorname {a2} \,x^{2}+\operatorname {a0} \right ) y+2 x \left (a^{2}+2 x^{2}\right ) y^{\prime }+\left (a^{2}+x^{2}\right )^{2} y^{\prime \prime } = 0 \]

6270

\[ {} \left (\operatorname {a4} \,x^{4}+\operatorname {a2} \,x^{2}+\operatorname {a0} \right ) y-2 x \left (a^{2}-x^{2}\right ) y^{\prime }+\left (a^{2}-x^{2}\right )^{2} y^{\prime \prime } = 0 \]

6271

\[ {} \left (\operatorname {b1} \,x^{2}+\operatorname {a1} \right ) y+x \left (\operatorname {b0} \,x^{2}+\operatorname {a0} \right ) y^{\prime }+\left (a^{2}+x^{2}\right )^{2} \left (b^{2}+x^{2}\right ) y^{\prime \prime } = 0 \]

6272

\[ {} \left (\operatorname {c1} \,x^{4}+\operatorname {b1} \,x^{2}+\operatorname {a1} \right ) y+x \left (\operatorname {b0} \,x^{2}+\operatorname {a0} \right ) y^{\prime }+\left (a^{2}-x^{2}\right )^{2} \left (b^{2}-x^{2}\right ) y^{\prime \prime } = 0 \]

6273

\[ {} -2 \left (1-x \right ) y+2 \left (3-x \right ) x \left (1+x \right ) y^{\prime }+\left (1-x \right ) x \left (1+x \right )^{2} y^{\prime \prime } = 0 \]

6274

\[ {} \left (c \,x^{2}+b x +a \right ) y+\left (1-x \right )^{2} x^{2} y^{\prime \prime } = 0 \]

6275

\[ {} -y+\left (1-2 x \right ) \left (1-x \right ) x y^{\prime }+\left (1-x \right )^{2} x^{2} y^{\prime \prime } = 0 \]

6276

\[ {} \left (\operatorname {c2} \,x^{2}+\operatorname {b2} x +\operatorname {a2} \right ) y+\left (1-x \right ) x \left (\operatorname {b2} x +\operatorname {a1} \right ) y^{\prime }+\left (1-x \right )^{2} x^{2} y^{\prime \prime } = 0 \]

6277

\[ {} b y+\left (a -x \right )^{2} x^{2} y^{\prime \prime } = 0 \]

6278

\[ {} \left (a -x \right )^{2} \left (-x +b \right )^{2} y^{\prime \prime } = k^{2} y \]

6279

\[ {} B y+\left (a -x \right ) \left (-x +b \right ) \left (A +2 x \right ) y^{\prime }+\left (a -x \right )^{2} \left (-x +b \right )^{2} y^{\prime \prime } = 0 \]

6280

\[ {} -y-2 \left (a -x \right )^{3} y^{\prime }+\left (a -x \right )^{4} y^{\prime \prime } = 0 \]

6281

\[ {} 2 \left (3 x +1\right ) y+2 \left (2-3 x \right ) x y^{\prime }+\left (1-2 x \right ) \left (1-x \right ) x^{2} y^{\prime \prime } = 0 \]

6282

\[ {} 2 \left (1-x \right ) y+2 \left (1-2 x \right ) \left (2-x \right ) x y^{\prime }+\left (1-2 x \right ) \left (1-x \right ) x^{2} y^{\prime \prime } = 0 \]

6283

\[ {} -\left (4 k^{2}+\left (4 p^{2}+1\right ) \left (-x^{2}+1\right )\right ) y-8 x \left (-x^{2}+1\right ) y^{\prime }+4 \left (-x^{2}+1\right )^{2} y^{\prime \prime } = 0 \]

6284

\[ {} -\left (4 k^{2}+\left (-4 p^{2}+1\right ) \left (-x^{2}+1\right )\right ) y-8 x \left (-x^{2}+1\right ) y^{\prime }+4 \left (-x^{2}+1\right )^{2} y^{\prime \prime } = 0 \]

6285

\[ {} -\left (a \left (a +1\right ) \left (1-x \right )+b^{2} x \right ) y+2 \left (1-3 x \right ) \left (1-x \right ) x y^{\prime }+4 x^{2} \left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

6286

\[ {} y+\left (b x +a \right )^{4} y^{\prime \prime } = 0 \]

6287

\[ {} A y+\left (c \,x^{2}+b x +a \right )^{2} y^{\prime \prime } = 0 \]

6288

\[ {} -y+x y^{\prime }+x^{5} y^{\prime \prime } = 0 \]

6289

\[ {} \left (-2 x^{3}+1\right ) y-x \left (-2 x^{3}+1\right ) y^{\prime }+x^{5} y^{\prime \prime } = 0 \]

6290

\[ {} x^{3} \left (\operatorname {c1} \,x^{4}+\operatorname {b1} \,x^{2}+\operatorname {a1} \right ) y+\left (\operatorname {b0} \,x^{4}+\operatorname {a0} \right ) y^{\prime }+x \left (a^{2}-x^{2}\right ) \left (b^{2}-x^{2}\right ) y^{\prime \prime } = 0 \]

6291

\[ {} a y-x^{5} y^{\prime }+x^{6} y^{\prime \prime } = 0 \]

6292

\[ {} y+3 x^{5} y^{\prime }+x^{6} y^{\prime \prime } = 0 \]

6293

\[ {} y+x^{3} \left (3 x^{2}+a \right ) y^{\prime }+x^{6} y^{\prime \prime } = 0 \]

6294

\[ {} \left (\operatorname {c2} \,x^{2}+\operatorname {b2} x +\operatorname {a2} \right ) y+\left (a -x \right ) \left (-x +b \right ) \left (c -x \right ) \left (\operatorname {c1} \,x^{2}+\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+\left (a -x \right )^{2} \left (-x +b \right )^{2} \left (c -x \right )^{2} y^{\prime \prime } = 0 \]

6295

\[ {} \left (-2 x^{2}+1\right ) y+4 x^{3} \left (2 x^{2}+1\right ) y^{\prime }+4 x^{6} y^{\prime \prime } = 0 \]

6296

\[ {} \left (8 x^{4}+10 x^{2}+1\right ) y-4 x^{3} \left (2 x^{2}+1\right ) y^{\prime }+4 x^{6} y^{\prime \prime } = 0 \]

6297

\[ {} \left (-a^{2}+4 b \right ) y+12 x^{5} y^{\prime }+4 x^{6} y^{\prime \prime } = 0 \]

6298

\[ {} \left (1-a \right )^{2} y+a \,x^{2 a -1} y^{\prime }+x^{2 a} y^{\prime \prime } = 0 \]

6299

\[ {} a^{2} x^{a -1} y+\left (-2 a +1\right ) x^{a} y^{\prime }+x^{a +1} y^{\prime \prime } = 0 \]

6300

\[ {} \left (\operatorname {a2} +\operatorname {b2} \,x^{k}\right ) y+x \left (\operatorname {a1} +\operatorname {b1} \,x^{k}\right ) y^{\prime }+x^{2} \left (\operatorname {a0} +\operatorname {b0} \,x^{k}\right ) y^{\prime \prime } = 0 \]

6301

\[ {} \left (\operatorname {a0} +\operatorname {a1} \cos \left (x \right )^{2}\right ) y+a^{2} \cos \left (x \right ) \sin \left (x \right ) y^{\prime }+\left (1-a^{2} \cos \left (x \right )^{2}\right ) y^{\prime \prime } = 0 \]

6302

\[ {} -\left (4 k^{2}-\left (-p^{2}+1\right ) \sinh \left (x \right )^{2}\right ) y+4 \cosh \left (x \right ) \sinh \left (x \right ) y^{\prime }+4 \sinh \left (x \right )^{2} y^{\prime \prime } = 0 \]

6303

\[ {} y^{\prime \prime } = 0 \]

6304

\[ {} y^{\prime \prime } = a y \]

6305

\[ {} y^{\prime \prime } = 6 y^{2} \]

6308

\[ {} y^{\prime \prime } = 2 y^{3} \]

6315

\[ {} a \,x^{r} y^{s}+y^{\prime \prime } = 0 \]

6316

\[ {} a \sin \left (y\right )+y^{\prime \prime } = 0 \]

6317

\[ {} a \,{\mathrm e}^{y}+y^{\prime \prime } = 0 \]

6318

\[ {} y^{\prime \prime } = f \left (y\right ) \]

6319

\[ {} y \left (2 f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )+3 f \left (x \right ) y^{\prime }+y^{\prime \prime } = 2 y^{3} \]

6320

\[ {} y^{\prime \prime }+y y^{\prime } = 0 \]

6321

\[ {} y^{\prime \prime }+y y^{\prime } = y^{3} \]

6322

\[ {} a y+y y^{\prime }+y^{\prime \prime } = y^{3} \]

6324

\[ {} 2 a^{2} y+a y^{2}+\left (3 a +y\right ) y^{\prime }+y^{\prime \prime } = y^{3} \]

6325

\[ {} y^{\prime \prime } = f \left (x \right ) y^{2}+y^{3}+y \left (-2 f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )+\left (3 f \left (x \right )-y\right ) y^{\prime } \]

6328

\[ {} y^{\prime \prime } = f^{\prime }\left (x \right ) y+\left (f \left (x \right )-2 y\right ) y^{\prime } \]

6334

\[ {} y^{\prime \prime } = f \left (x \right ) y^{2}-y^{3}+\left (f \left (x \right )-3 y\right ) y^{\prime } \]

6335

\[ {} y^{\prime \prime } = a \left (1+2 y y^{\prime }\right ) \]

6336

\[ {} b y+a \left (y^{2}-1\right ) y^{\prime }+y^{\prime \prime } = 0 \]

6337

\[ {} g \left (x , y\right )+f \left (x , y\right ) y^{\prime }+y^{\prime \prime } = 0 \]

6339

\[ {} 2 \cot \left (x \right ) y^{\prime }+2 \tan \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime } = 0 \]

6340

\[ {} y^{\prime \prime } = a {y^{\prime }}^{2} \]

6342

\[ {} b y+a {y^{\prime }}^{2}+y^{\prime \prime } = 0 \]

6343

\[ {} b \sin \left (y\right )+a {y^{\prime }}^{2}+y^{\prime \prime } = 0 \]

6344

\[ {} c y+b y^{\prime }+a {y^{\prime }}^{2}+y^{\prime \prime } = 0 \]

6345

\[ {} y^{\prime \prime } = {\mathrm e}^{x} {y^{\prime }}^{2} \]

6346

\[ {} f \left (x \right ) y^{\prime }+g \left (x \right ) {y^{\prime }}^{2}+y^{\prime \prime } = 0 \]

6347

\[ {} b y+a y {y^{\prime }}^{2}+y^{\prime \prime } = 0 \]

6348

\[ {} g \left (y\right )+f \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime } = 0 \]

6349

\[ {} f \left (x \right ) y^{\prime }+g \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime } = 0 \]

6350

\[ {} f \left (y\right ) y^{\prime }+g \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime } = 0 \]

6351

\[ {} h \left (y\right )+f \left (y\right ) y^{\prime }+g \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime } = 0 \]

6352

\[ {} y^{\prime }+{y^{\prime }}^{3}+y^{\prime \prime } = 0 \]

6353

\[ {} y^{\prime \prime } = \left (a -x \right ) {y^{\prime }}^{3} \]