Internal
problem
ID
[6302]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
3.
THE
DIFFERENTIAL
EQUATION
IS
LINEAR
AND
OF
SECOND
ORDER,
page
311
Problem
number
:
596
Date
solved
:
Friday, October 03, 2025 at 02:00:40 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=-(4*k^2-(-p^2+1)*sinh(x)^2)*y(x)+4*cosh(x)*sinh(x)*diff(y(x),x)+4*sinh(x)^2*diff(diff(y(x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=-((4*k^2 - (1 - p^2)*Sinh[x]^2)*y[x]) + 4*Cosh[x]*Sinh[x]*D[y[x],x] + 4*Sinh[x]^2*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") k = symbols("k") p = symbols("p") y = Function("y") ode = Eq((-4*k**2 + (1 - p**2)*sinh(x)**2)*y(x) + 4*sinh(x)**2*Derivative(y(x), (x, 2)) + 4*sinh(x)*cosh(x)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -(k**2*y(x) - (-p**2*y(x) + y(x) + 4*Derivative(y(x), (x, 2)))*s