Internal
problem
ID
[6284]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
3.
THE
DIFFERENTIAL
EQUATION
IS
LINEAR
AND
OF
SECOND
ORDER,
page
311
Problem
number
:
578
Date
solved
:
Friday, October 03, 2025 at 01:58:12 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=-(4*k^2+(-4*p^2+1)*(-x^2+1))*y(x)-8*x*(-x^2+1)*diff(y(x),x)+4*(-x^2+1)^2*diff(diff(y(x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=-((4*k^2 + (1 - 4*p^2)*(1 - x^2))*y[x]) - 8*x*(1 - x^2)*D[y[x],x] + 4*(1 - x^2)^2*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") k = symbols("k") p = symbols("p") y = Function("y") ode = Eq(-8*x*(1 - x**2)*Derivative(y(x), x) + 4*(1 - x**2)**2*Derivative(y(x), (x, 2)) + (-4*k**2 - (1 - 4*p**2)*(1 - x**2))*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False