Internal
problem
ID
[6279]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
3.
THE
DIFFERENTIAL
EQUATION
IS
LINEAR
AND
OF
SECOND
ORDER,
page
311
Problem
number
:
573
Date
solved
:
Tuesday, September 30, 2025 at 02:42:09 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=B*y(x)+(a-x)*(b-x)*(A+2*x)*diff(y(x),x)+(a-x)^2*(b-x)^2*diff(diff(y(x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=B*y[x] + (a - x)*(b - x)*(A + 2*x)*D[y[x],x] + (a - x)^2*(b - x)^2*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") A = symbols("A") B = symbols("B") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(B*y(x) + (A + 2*x)*(a - x)*(b - x)*Derivative(y(x), x) + (a - x)**2*(b - x)**2*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False