Internal
problem
ID
[6257]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
3.
THE
DIFFERENTIAL
EQUATION
IS
LINEAR
AND
OF
SECOND
ORDER,
page
311
Problem
number
:
549
Date
solved
:
Tuesday, September 30, 2025 at 02:39:03 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(-x^2+2)*y(x)-x*(-x^2+2)*diff(y(x),x)+x^2*(-x^2+1)*diff(diff(y(x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(2 - x^2)*y[x] - x*(2 - x^2)*D[y[x],x] + x^2*(1 - x^2)*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*(1 - x**2)*Derivative(y(x), (x, 2)) - x*(2 - x**2)*Derivative(y(x), x) + (2 - x**2)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False