Internal
problem
ID
[6294]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
3.
THE
DIFFERENTIAL
EQUATION
IS
LINEAR
AND
OF
SECOND
ORDER,
page
311
Problem
number
:
588
Date
solved
:
Friday, October 03, 2025 at 02:00:21 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(c2*x^2+b2*x+a2)*y(x)+(a-x)*(b-x)*(c-x)*(c1*x^2+b1*x+a1)*diff(y(x),x)+(a-x)^2*(b-x)^2*(c-x)^2*diff(diff(y(x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(a2 + b2*x + c2*x^2)*y[x] + (a - x)*(b - x)*(c - x)*(a1 + b1*x + c1*x^2)*D[y[x],x] + (a - x)^2*(b - x)^2*(c - x)^2*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Too large to display
from sympy import * x = symbols("x") a = symbols("a") a1 = symbols("a1") a2 = symbols("a2") b = symbols("b") b1 = symbols("b1") b2 = symbols("b2") c = symbols("c") c1 = symbols("c1") c2 = symbols("c2") y = Function("y") ode = Eq((a - x)**2*(b - x)**2*(c - x)**2*Derivative(y(x), (x, 2)) + (a - x)*(b - x)*(c - x)*(a1 + b1*x + c1*x**2)*Derivative(y(x), x) + (a2 + b2*x + c2*x**2)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False